These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 24624828)

  • 21. Regulatory assessment of chemicals within OECD member countries, EU and in Russia.
    Fjodorova N; Novich M; Vrachko M; Kharchevnikova N; Zholdakova Z; Sinitsyna O; Benfenati E
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2008; 26(1):40-88. PubMed ID: 18322867
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ecological risk of anthropogenic pollutants to reptiles: Evaluating assumptions of sensitivity and exposure.
    Weir SM; Suski JG; Salice CJ
    Environ Pollut; 2010 Dec; 158(12):3596-606. PubMed ID: 20855139
    [TBL] [Abstract][Full Text] [Related]  

  • 23. QSAR and chemometric approaches for setting water quality objectives for dangerous chemicals.
    Vighi M; Gramatica P; Consolaro F; Todeschini R
    Ecotoxicol Environ Saf; 2001 Jul; 49(3):206-20. PubMed ID: 11440473
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exploring QSTR analysis of the toxicity of phenols and thiophenols using machine learning methods.
    Asadollahi-Baboli M
    Environ Toxicol Pharmacol; 2012 Nov; 34(3):826-31. PubMed ID: 23068157
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantitative structure-activity relationships for predicting skin and eye irritation.
    Patlewicz G; Rodford R; Walker JD
    Environ Toxicol Chem; 2003 Aug; 22(8):1862-9. PubMed ID: 12924585
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The use of traits-based approaches and eco(toxico)logical models to advance the ecological risk assessment framework for chemicals.
    Van den Brink PJ; Baird DJ; Baveco HJ; Focks A
    Integr Environ Assess Manag; 2013 Jul; 9(3):e47-57. PubMed ID: 23625553
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Overview of neurotoxicology.
    Tilson HA
    Curr Protoc Toxicol; 2001 May; Chapter 11():Unit11.1. PubMed ID: 20957638
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Health effects classification and its role in the derivation of minimal risk levels: reproductive and endocrine effects.
    Pohl HR; Luukinen B; Holler JS
    Regul Toxicol Pharmacol; 2005 Jul; 42(2):209-17. PubMed ID: 15921838
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation and application of the RD50 for determining acceptable exposure levels of airborne sensory irritants for the general public.
    Kuwabara Y; Alexeeff GV; Broadwin R; Salmon AG
    Environ Health Perspect; 2007 Nov; 115(11):1609-16. PubMed ID: 18007993
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Harmonization with international approaches to guidance documents on methods of assessment of the mutagenic properties of chemical environmental factors].
    Zhurkov VS; Sycheva LP; Ingel' FI; Akhal'tseva LV; Iurchenko VV
    Gig Sanit; 2013; (6):49-52. PubMed ID: 24624821
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The future of human health risk assessment of environmental chemicals.
    Hodgson E
    Prog Mol Biol Transl Sci; 2012; 112():307-22. PubMed ID: 22974745
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Screening for PBT chemicals among the "existing" and "new" chemicals of the EU.
    Strempel S; Scheringer M; Ng CA; Hungerbühler K
    Environ Sci Technol; 2012 Jun; 46(11):5680-7. PubMed ID: 22494215
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Adverse effects as a human toxicological problem].
    Schimmelpfennig W
    Schriftenr Ver Wasser Boden Lufthyg; 1999; 103():108-38. PubMed ID: 10719708
    [No Abstract]   [Full Text] [Related]  

  • 34. Modelling acute oral mammalian toxicity. 1. Definition of a quantifiable baseline effect.
    Koleva YK; Cronin MT; Madden JC; Schwöbel JA
    Toxicol In Vitro; 2011 Oct; 25(7):1281-93. PubMed ID: 21557997
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Health effects classification and its role in the derivation of minimal risk levels: renal effects.
    Chou CH; Pohl HR
    Regul Toxicol Pharmacol; 2005 Jul; 42(2):202-8. PubMed ID: 15921839
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The U.S. Environmental Protection Agency strategic plan for evaluating the toxicity of chemicals.
    Firestone M; Kavlock R; Zenick H; Kramer M;
    J Toxicol Environ Health B Crit Rev; 2010 Feb; 13(2-4):139-62. PubMed ID: 20574895
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Environmental toxicological fate prediction of diverse organic chemicals based on steady-state compartmental chemical mass ratio using quantitative structure-fate relationship (QSFR) models.
    Pramanik S; Roy K
    Chemosphere; 2013 Jul; 92(5):600-7. PubMed ID: 23642702
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Bayesian approach for determining the no effect concentration and hazardous concentration in ecotoxicology.
    Fox DR
    Ecotoxicol Environ Saf; 2010 Feb; 73(2):123-31. PubMed ID: 19836077
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mode of action clustering of chemicals and environmental samples on the bases of bacterial stress gene inductions.
    Dardenne F; Van Dongen S; Nobels I; Smolders R; De Coen W; Blust R
    Toxicol Sci; 2008 Feb; 101(2):206-14. PubMed ID: 17951611
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Classification and labeling of industrial products with extreme pH by making use of in vitro methods for the assessment of skin and eye irritation and corrosion in a weight of evidence approach.
    Scheel J; Heppenheimer A; Lehringer E; Kreutz J; Poth A; Ammann H; Reisinger K; Banduhn N
    Toxicol In Vitro; 2011 Oct; 25(7):1435-47. PubMed ID: 21550395
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.