BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 24624925)

  • 21. [Quantitative determination of pazufloxacin using water-soluble quantum dots as fluorescent probes].
    Ling X; Deng DW; Zhong WY; Yu JS
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Jun; 28(6):1317-21. PubMed ID: 18800713
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cancer Cell Targeting Using Folic Acid/Anti-HER2 Antibody Conjugated Fluorescent CdSe/CdS/ZnS-Mercaptopropionic Acid and CdTe-Mercaptosuccinic Acid Quantum Dots.
    Singh G; Kumar M; Soni U; Arora V; Bansal V; Gupta D; Bhat M; Dinda AK; Sapra S; Singh H
    J Nanosci Nanotechnol; 2016 Jan; 16(1):130-43. PubMed ID: 27398438
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biocompatible and fluorescent water based NIR emitting CdTe quantum dot probes for biomedical applications.
    Kumari A; Sharma A; Sharma R; Malairaman U; Raj Singh R
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Mar; 248():119206. PubMed ID: 33272844
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hydrothermal synthesis of highly luminescent CdTe quantum dots by adjusting precursors' concentration and their conjunction with BSA as biological fluorescent probes.
    Li M; Ge Y; Chen Q; Xu S; Wang N; Zhang X
    Talanta; 2007 Apr; 72(1):89-94. PubMed ID: 19071586
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MPA-CdTe quantum dots as "on-off-on" sensitive fluorescence probe to detect ascorbic acid via redox reaction.
    Ding M; Wang K; Fang M; Zhu W; Du L; Li C
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jun; 234():118249. PubMed ID: 32179461
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cancer Cell Targeting Using Folic Acid/Anti-HER2 Antibody Conjugated Fluorescent CdSe/CdS/ZnS-MPA and CdTe-MSA Quantum Dots.
    Singh G; Kumar M; Soni U; Arora V; Bansal V; Gupta D; Bhat M; Dinda AK; Sapra S; Singh H
    J Nanosci Nanotechnol; 2015 Dec; 15(12):9382-95. PubMed ID: 26682358
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Aqueous synthesis of highly luminescent surface Mn2+-doped CdTe quantum dots as a potential multimodal agent.
    Zhang F; He F; He XW; Li WY; Zhang YK
    Luminescence; 2014 Dec; 29(8):1059-65. PubMed ID: 24788557
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Highly luminescent hybrid SiO2-coated CdTe quantum dots: synthesis and properties.
    Liu N; Yang P
    Luminescence; 2013; 28(4):542-50. PubMed ID: 23460504
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In Situ Preparation of Amphibious ZnO Quantum Dots with Blue Fluorescence Based on Hyperbranched Polymers and their Application in Bio-Imaging.
    Lei G; Yang S; Cao R; Zhou P; Peng H; Peng R; Zhang X; Yang Y; Li Y; Wang M; He Y; Zhou L; Du J; Du W; Shi Y; Wu H
    Polymers (Basel); 2020 Jan; 12(1):. PubMed ID: 31935952
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photodegradation of Mercaptopropionic Acid- and Thioglycollic Acid-Capped CdTe Quantum Dots in Buffer Solutions.
    Miao Y; Yang P; Zhao J; Du Y; He H; Liu Y
    J Nanosci Nanotechnol; 2015 Jun; 15(6):4462-9. PubMed ID: 26369066
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Construction and application of a pH-sensitive nanoreactor via a double-hydrophilic multiarm hyperbranched polymer.
    Zhu L; Shi Y; Tu C; Wang R; Pang Y; Qiu F; Zhu X; Yan D; He L; Jin C; Zhu B
    Langmuir; 2010 Jun; 26(11):8875-81. PubMed ID: 20225825
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Switch-on fluorescent strategy based on crystal violet-functionalized CdTe quantum dots for detecting L-cysteine and glutathione in water and urine.
    Sheng Z; Chen L
    Anal Bioanal Chem; 2017 Oct; 409(26):6081-6090. PubMed ID: 28799001
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Aqueous synthesis of highly stable CdTe/ZnS Core/Shell quantum dots for bioimaging.
    Saikia D; Chakravarty S; Sarma NS; Bhattacharjee S; Datta P; Adhikary NC
    Luminescence; 2017 May; 32(3):401-408. PubMed ID: 27511527
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Facile synthesis and photophysical characterization of luminescent CdTe quantum dots for Forster resonance energy transfer based immunosensing of staphylococcal enterotoxin B.
    Vinayaka AC; Thakur MS
    Luminescence; 2013; 28(6):827-35. PubMed ID: 23192990
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The synthesis and modification of CdTe/CdS core shell quantum dots.
    Chen J; Xiao A; Zhang Z; Yu Y; Yan Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Dec; 151():506-9. PubMed ID: 26162337
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Long-term exposure to CdTe quantum dots causes functional impairments in live cells.
    Cho SJ; Maysinger D; Jain M; Röder B; Hackbarth S; Winnik FM
    Langmuir; 2007 Feb; 23(4):1974-80. PubMed ID: 17279683
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Influence of Surface Modification on the Photoluminescence of CdTe Quantum Dots: Realization of Bio-Imaging via Cost-Effective Polymer.
    Jin G; Jiang LM; Yi DM; Sun HZ; Sun HC
    Chemphyschem; 2015 Dec; 16(17):3687-94. PubMed ID: 26377950
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design and synthesis of highly luminescent near-infrared-emitting water-soluble CdTe/CdSe/ZnS core/shell/shell quantum dots.
    Zhang W; Chen G; Wang J; Ye BC; Zhong X
    Inorg Chem; 2009 Oct; 48(20):9723-31. PubMed ID: 19772326
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Self-assembly of CdTe nanocrystals at the water/oil interface by amphiphilic hyperbranched polymers.
    Shi Y; Tu C; Zhu Q; Qian H; Ren J; Liu C; Zhu X; Yan D; Kong ES; He P
    Nanotechnology; 2008 Nov; 19(44):445609. PubMed ID: 21832741
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Aqueous-phase synthesis of highly luminescent CdTe/ZnTe core/shell quantum dots optimized for targeted bioimaging.
    Law WC; Yong KT; Roy I; Ding H; Hu R; Zhao W; Prasad PN
    Small; 2009 Jun; 5(11):1302-10. PubMed ID: 19242947
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.