These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 24624945)

  • 21. Improved prediction of bilayer and monolayer properties using a refined BMW-MARTINI force field.
    Miguel V; Perillo MA; Villarreal MA
    Biochim Biophys Acta; 2016 Nov; 1858(11):2903-2910. PubMed ID: 27591685
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular-dynamics simulation of amphiphilic bilayer membranes and wormlike micelles: a multi-scale modelling approach to the design of viscoelastic surfactant solutions.
    Boek ES; Den Otter WK; Briels WJ; Iakovlev D
    Philos Trans A Math Phys Eng Sci; 2004 Aug; 362(1821):1625-38. PubMed ID: 15306435
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CHARMM-GUI Membrane Builder toward realistic biological membrane simulations.
    Wu EL; Cheng X; Jo S; Rui H; Song KC; Dávila-Contreras EM; Qi Y; Lee J; Monje-Galvan V; Venable RM; Klauda JB; Im W
    J Comput Chem; 2014 Oct; 35(27):1997-2004. PubMed ID: 25130509
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Automated builder and database of protein/membrane complexes for molecular dynamics simulations.
    Jo S; Kim T; Im W
    PLoS One; 2007 Sep; 2(9):e880. PubMed ID: 17849009
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CHARMM-GUI HMMM Builder for Membrane Simulations with the Highly Mobile Membrane-Mimetic Model.
    Qi Y; Cheng X; Lee J; Vermaas JV; Pogorelov TV; Tajkhorshid E; Park S; Klauda JB; Im W
    Biophys J; 2015 Nov; 109(10):2012-22. PubMed ID: 26588561
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CHARMM-GUI Membrane Builder for mixed bilayers and its application to yeast membranes.
    Jo S; Lim JB; Klauda JB; Im W
    Biophys J; 2009 Jul; 97(1):50-8. PubMed ID: 19580743
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Shock wave interaction with a phospholipid membrane: coarse-grained computer simulations.
    Santo KP; Berkowitz ML
    J Chem Phys; 2014 Feb; 140(5):054906. PubMed ID: 24511978
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure and Dynamics of Phospholipid Nanodiscs from All-Atom and Coarse-Grained Simulations.
    Debnath A; Schäfer LV
    J Phys Chem B; 2015 Jun; 119(23):6991-7002. PubMed ID: 25978497
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CHARMM36 united atom chain model for lipids and surfactants.
    Lee S; Tran A; Allsopp M; Lim JB; Hénin J; Klauda JB
    J Phys Chem B; 2014 Jan; 118(2):547-56. PubMed ID: 24341749
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Membrane protein dynamics versus environment: simulations of OmpA in a micelle and in a bilayer.
    Bond PJ; Sansom MS
    J Mol Biol; 2003 Jun; 329(5):1035-53. PubMed ID: 12798692
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An overview of molecular dynamics simulations of oxidized lipid systems, with a comparison of ELBA and MARTINI force fields for coarse grained lipid simulations.
    Siani P; de Souza RM; Dias LG; Itri R; Khandelia H
    Biochim Biophys Acta; 2016 Oct; 1858(10):2498-2511. PubMed ID: 27058982
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hybrid coarse-graining approach for lipid bilayers at large length and time scales.
    Ayton GS; Voth GA
    J Phys Chem B; 2009 Apr; 113(13):4413-24. PubMed ID: 19281167
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Asynchronous Reciprocal Coupling of Martini 2.2 Coarse-Grained and CHARMM36 All-Atom Simulations in an Automated Multiscale Framework.
    López CA; Zhang X; Aydin F; Shrestha R; Van QN; Stanley CB; Carpenter TS; Nguyen K; Patel LA; Chen D; Burns V; Hengartner NW; Reddy TJE; Bhatia H; Di Natale F; Tran TH; Chan AH; Simanshu DK; Nissley DV; Streitz FH; Stephen AG; Turbyville TJ; Lightstone FC; Gnanakaran S; Ingólfsson HI; Neale C
    J Chem Theory Comput; 2022 Aug; 18(8):5025-5045. PubMed ID: 35866871
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Finite-Size Effects and Optimal System Sizes in Simulations of Surfactant Micelle Self-Assembly.
    Harris JJ; Pantelopulos GA; Straub JE
    J Phys Chem B; 2021 May; 125(19):5068-5077. PubMed ID: 33961427
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On the application of the MARTINI coarse-grained model to immersion of a protein in a phospholipid bilayer.
    Mustafa G; Nandekar PP; Yu X; Wade RC
    J Chem Phys; 2015 Dec; 143(24):243139. PubMed ID: 26723624
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of Force Field Resolution on Membrane Mechanical Response and Mechanoporation Damage under Deformation Simulations.
    Vo ATN; Murphy MA; Phan PK; Prabhu RK; Stone TW
    Mol Biotechnol; 2024 Apr; 66(4):865-875. PubMed ID: 37016179
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phase separation in a lipid/cholesterol system: comparison of coarse-grained and united-atom simulations.
    Hakobyan D; Heuer A
    J Phys Chem B; 2013 Apr; 117(14):3841-51. PubMed ID: 23470157
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Coarse-grained implicit solvent lipid force field with a compatible resolution to the Cα protein representation.
    Ugarte La Torre D; Takada S
    J Chem Phys; 2020 Nov; 153(20):205101. PubMed ID: 33261497
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mixing MARTINI: electrostatic coupling in hybrid atomistic-coarse-grained biomolecular simulations.
    Wassenaar TA; Ingólfsson HI; Priess M; Marrink SJ; Schäfer LV
    J Phys Chem B; 2013 Apr; 117(13):3516-30. PubMed ID: 23406326
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The multiscale coarse-graining method. VII. Free energy decomposition of coarse-grained effective potentials.
    Lu L; Voth GA
    J Chem Phys; 2011 Jun; 134(22):224107. PubMed ID: 21682507
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.