BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 24625080)

  • 1. Hierarchical hydrodynamic flow confinement: efficient use and retrieval of chemicals for microscale chemistry on surfaces.
    Autebert J; Kashyap A; Lovchik RD; Delamarche E; Kaigala GV
    Langmuir; 2014 Apr; 30(12):3640-5. PubMed ID: 24625080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid Subtractive Patterning of Live Cell Layers with a Microfluidic Probe.
    Kashyap A; Cors JF; Lovchik RD; Kaigala GV
    J Vis Exp; 2016 Sep; (115):. PubMed ID: 27685165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A vertical microfluidic probe.
    Kaigala GV; Lovchik RD; Drechsler U; Delamarche E
    Langmuir; 2011 May; 27(9):5686-93. PubMed ID: 21476506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep-Reaching Hydrodynamic Flow Confinement: Micrometer-Scale Liquid Localization for Open Substrates With Topographical Variations.
    Oskooei A; Kaigala GV
    IEEE Trans Biomed Eng; 2017 Jun; 64(6):1261-1269. PubMed ID: 28541189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microscale hydrodynamic confinements: shaping liquids across length scales as a toolbox in life sciences.
    Taylor DP; Mathur P; Renaud P; Kaigala GV
    Lab Chip; 2022 Apr; 22(8):1415-1437. PubMed ID: 35348555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidics in the "open space" for performing localized chemistry on biological interfaces.
    Kaigala GV; Lovchik RD; Delamarche E
    Angew Chem Int Ed Engl; 2012 Nov; 51(45):11224-40. PubMed ID: 23111955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable hydrodynamic characteristics in microchannels with biomimetic superhydrophobic (lotus leaf replica) walls.
    Dey R; Raj M K; Bhandaru N; Mukherjee R; Chakraborty S
    Soft Matter; 2014 May; 10(19):3451-62. PubMed ID: 24647804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A microfluidic-based hydrodynamic trap: design and implementation.
    Tanyeri M; Ranka M; Sittipolkul N; Schroeder CM
    Lab Chip; 2011 May; 11(10):1786-94. PubMed ID: 21479293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Capillary-Driven Microfluidic Chips for Miniaturized Immunoassays: Patterning Capture Antibodies Using Microcontact Printing and Dry-Film Resists.
    Temiz Y; Lovchik RD; Delamarche E
    Methods Mol Biol; 2017; 1547():37-47. PubMed ID: 28044285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A microfluidic-based hydrodynamic trap for single particles.
    Johnson-Chavarria EM; Tanyeri M; Schroeder CM
    J Vis Exp; 2011 Jan; (47):. PubMed ID: 21304467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrodynamic shearing of DNA in a polymeric microfluidic device.
    Nesterova IV; Hupert ML; Witek MA; Soper SA
    Lab Chip; 2012 Mar; 12(6):1044-7. PubMed ID: 22314498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On-chip controlled surfactant-DNA coil-globule transition by rapid solvent exchange using hydrodynamic flow focusing.
    Iliescu C; Mărculescu C; Venkataraman S; Languille B; Yu H; Tresset G
    Langmuir; 2014 Nov; 30(44):13125-36. PubMed ID: 25351469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Convection-Enhanced Biopatterning with Recirculation of Hydrodynamically Confined Nanoliter Volumes of Reagents.
    Autebert J; Cors JF; Taylor DP; Kaigala GV
    Anal Chem; 2016 Mar; 88(6):3235-42. PubMed ID: 26837532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pinched-flow hydrodynamic stretching of single-cells.
    Dudani JS; Gossett DR; Tse HT; Di Carlo D
    Lab Chip; 2013 Sep; 13(18):3728-34. PubMed ID: 23884381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fracture fabrication of a multi-scale channel device that efficiently captures and linearizes DNA from dilute solutions.
    Kim BC; Weerappuli P; Thouless MD; Takayama S
    Lab Chip; 2015 Mar; 15(5):1329-34. PubMed ID: 25589471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cruise control for segmented flow.
    Abolhasani M; Singh M; Kumacheva E; Günther A
    Lab Chip; 2012 Nov; 12(22):4787-95. PubMed ID: 22992756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Programmable microfluidic patterning of protein gradients on hydrogels.
    Allazetta S; Cosson S; Lutolf MP
    Chem Commun (Camb); 2011 Jan; 47(1):191-3. PubMed ID: 20830358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic platforms with monolithically integrated hierarchical apertures for the facile and rapid formation of cargo-carrying vesicles.
    Cho H; Kim J; Suga K; Ishigami T; Park H; Bang JW; Seo S; Choi M; Chang PS; Umakoshi H; Jung HS; Suh KY
    Lab Chip; 2015 Jan; 15(2):373-7. PubMed ID: 25422046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patterning multiplex protein microarrays in a single microfluidic channel.
    Didar TF; Foudeh AM; Tabrizian M
    Anal Chem; 2012 Jan; 84(2):1012-8. PubMed ID: 22124457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Centimeter-Scale Surface Interactions Using Hydrodynamic Flow Confinements.
    Taylor DP; Zeaf I; Lovchik RD; Kaigala GV
    Langmuir; 2016 Oct; 32(41):10537-10544. PubMed ID: 27653338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.