BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 24625220)

  • 1. Vectorology and factor delivery in induced pluripotent stem cell reprogramming.
    Hu K
    Stem Cells Dev; 2014 Jun; 23(12):1301-15. PubMed ID: 24625220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. All roads lead to induced pluripotent stem cells: the technologies of iPSC generation.
    Hu K
    Stem Cells Dev; 2014 Jun; 23(12):1285-300. PubMed ID: 24524728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation of mouse and human induced pluripotent stem cells (iPSC) from primary somatic cells.
    Lorenzo IM; Fleischer A; Bachiller D
    Stem Cell Rev Rep; 2013 Aug; 9(4):435-50. PubMed ID: 23104133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Excision of a viral reprogramming cassette by delivery of synthetic Cre mRNA.
    Loh YH; Yang JC; De Los Angeles A; Guo C; Cherry A; Rossi DJ; Park IH; Daley GQ
    Curr Protoc Stem Cell Biol; 2012; Chapter 4():Unit4A.5. PubMed ID: 22605648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The piggyBac Transposon as a Platform Technology for Somatic Cell Reprogramming Studies in Mouse.
    Woltjen K; Kim SI; Nagy A
    Methods Mol Biol; 2016; 1357():1-22. PubMed ID: 26126450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transgene-free production of pluripotent stem cells using piggyBac transposons.
    Woltjen K; Hämäläinen R; Kibschull M; Mileikovsky M; Nagy A
    Methods Mol Biol; 2011; 767():87-103. PubMed ID: 21822869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strategies to generate induced pluripotent stem cells.
    Hayes M; Zavazava N
    Methods Mol Biol; 2013; 1029():77-92. PubMed ID: 23756943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells.
    Woltjen K; Michael IP; Mohseni P; Desai R; Mileikovsky M; Hämäläinen R; Cowling R; Wang W; Liu P; Gertsenstein M; Kaji K; Sung HK; Nagy A
    Nature; 2009 Apr; 458(7239):766-70. PubMed ID: 19252478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inducible Transgene Expression in Human iPS Cells Using Versatile All-in-One piggyBac Transposons.
    Kim SI; Oceguera-Yanez F; Sakurai C; Nakagawa M; Yamanaka S; Woltjen K
    Methods Mol Biol; 2016; 1357():111-31. PubMed ID: 26025620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simple and efficient method for generation of induced pluripotent stem cells using piggyBac transposition of doxycycline-inducible factors and an EOS reporter system.
    Tsukiyama T; Asano R; Kawaguchi T; Kim N; Yamada M; Minami N; Ohinata Y; Imai H
    Genes Cells; 2011 Jul; 16(7):815-25. PubMed ID: 21658168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PiggyBac toolbox.
    Di Matteo M; Mátrai J; Belay E; Firdissa T; Vandendriessche T; Chuah MK
    Methods Mol Biol; 2012; 859():241-54. PubMed ID: 22367876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of Integration-free Induced Pluripotent Stem Cells from Human Peripheral Blood Mononuclear Cells Using Episomal Vectors.
    Wen W; Zhang JP; Chen W; Arakaki C; Li X; Baylink D; Botimer GD; Xu J; Yuan W; Cheng T; Zhang XB
    J Vis Exp; 2017 Jan; (119):. PubMed ID: 28117800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [An improved method for generating integration-free human induced pluripotent stem cells].
    Liu SP; Li YX; Xu J; Gu HH; Zhang HY; Liang HY; Liu HZ; Zhang XB; Cheng T; Yuan WP
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2014 Jun; 22(3):580-7. PubMed ID: 24989258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Derivation of Equine-Induced Pluripotent Stem Cell Lines Using a piggyBac Transposon Delivery System and Temporal Control of Transgene Expression.
    Nagy K; Nagy A
    Methods Mol Biol; 2015; 1330():79-88. PubMed ID: 26621591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Excision of viral reprogramming cassettes by Cre protein transduction enables rapid, robust and efficient derivation of transgene-free human induced pluripotent stem cells.
    Kadari A; Lu M; Li M; Sekaran T; Thummer RP; Guyette N; Chu V; Edenhofer F
    Stem Cell Res Ther; 2014 Apr; 5(2):47. PubMed ID: 24713299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide piggyBac transposon mediated screening reveals genes related to reprogramming.
    Zhang X; Wei X; Wu Y; Wang Y; Tan C; Hu X; Li N; Capecchi MR; Wu S
    Protein Cell; 2017 Feb; 8(2):134-139. PubMed ID: 27761808
    [No Abstract]   [Full Text] [Related]  

  • 17. Non-integrating episomal plasmid-based reprogramming of human amniotic fluid stem cells into induced pluripotent stem cells in chemically defined conditions.
    Slamecka J; Salimova L; McClellan S; van Kelle M; Kehl D; Laurini J; Cinelli P; Owen L; Hoerstrup SP; Weber B
    Cell Cycle; 2016; 15(2):234-49. PubMed ID: 26654216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of Human iPSCs by Episomal Reprogramming of Skin Fibroblasts and Peripheral Blood Mononuclear Cells.
    Febbraro F; Chen M; Denham M
    Methods Mol Biol; 2021; 2239():135-151. PubMed ID: 33226617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of transgene-free iPSC lines from human normal and neoplastic blood cells using episomal vectors.
    Hu K; Slukvin I
    Methods Mol Biol; 2013; 997():163-76. PubMed ID: 23546755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of induced pluripotent stem cells from human foetal fibroblasts using the Sleeping Beauty transposon gene delivery system.
    Davis RP; Nemes C; Varga E; Freund C; Kosmidis G; Gkatzis K; de Jong D; Szuhai K; Dinnyés A; Mummery CL
    Differentiation; 2013; 86(1-2):30-7. PubMed ID: 23933400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.