BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 24625316)

  • 1. Modelling and predicting the biological effects of nanomaterials.
    Winkler DA; Burden FR; Yan B; Weissleder R; Tassa C; Shaw S; Epa VC
    SAR QSAR Environ Res; 2014; 25(2):161-72. PubMed ID: 24625316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation criteria for the quality of published experimental data on nanomaterials and their usefulness for QSAR modelling.
    Lubinski L; Urbaszek P; Gajewicz A; Cronin MT; Enoch SJ; Madden JC; Leszczynska D; Leszczynski J; Puzyn T
    SAR QSAR Environ Res; 2013; 24(12):995-1008. PubMed ID: 24313439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytotoxicity induced by engineered silver nanocrystallites is dependent on surface coatings and cell types.
    Suresh AK; Pelletier DA; Wang W; Morrell-Falvey JL; Gu B; Doktycz MJ
    Langmuir; 2012 Feb; 28(5):2727-35. PubMed ID: 22216981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In silico analysis of nanomaterials hazard and risk.
    Cohen Y; Rallo R; Liu R; Liu HH
    Acc Chem Res; 2013 Mar; 46(3):802-12. PubMed ID: 23138971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent advances, and unresolved issues, in the application of computational modelling to the prediction of the biological effects of nanomaterials.
    Winkler DA
    Toxicol Appl Pharmacol; 2016 May; 299():96-100. PubMed ID: 26723909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell-specific targeting of nanoparticles by multivalent attachment of small molecules.
    Weissleder R; Kelly K; Sun EY; Shtatland T; Josephson L
    Nat Biotechnol; 2005 Nov; 23(11):1418-23. PubMed ID: 16244656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring quantitative nanostructure-activity relationships (QNAR) modeling as a tool for predicting biological effects of manufactured nanoparticles.
    Fourches D; Pu D; Tropsha A
    Comb Chem High Throughput Screen; 2011 Mar; 14(3):217-25. PubMed ID: 21275889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative study of predictive computational models for nanoparticle-induced cytotoxicity.
    Sayes C; Ivanov I
    Risk Anal; 2010 Nov; 30(11):1723-34. PubMed ID: 20561263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer-aided nanotoxicology: assessing cytotoxicity of nanoparticles under diverse experimental conditions by using a novel QSTR-perturbation approach.
    Luan F; Kleandrova VV; González-Díaz H; Ruso JM; Melo A; Speck-Planche A; Cordeiro MN
    Nanoscale; 2014 Sep; 6(18):10623-30. PubMed ID: 25083742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fate and risks of nanomaterials in aquatic and terrestrial environments.
    Batley GE; Kirby JK; McLaughlin MJ
    Acc Chem Res; 2013 Mar; 46(3):854-62. PubMed ID: 22759090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. QSAR as a random event: modeling of nanoparticles uptake in PaCa2 cancer cells.
    Toropov AA; Toropova AP; Puzyn T; Benfenati E; Gini G; Leszczynska D; Leszczynski J
    Chemosphere; 2013 Jun; 92(1):31-7. PubMed ID: 23566368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biophysical responses upon the interaction of nanomaterials with cellular interfaces.
    Wu YL; Putcha N; Ng KW; Leong DT; Lim CT; Loo SC; Chen X
    Acc Chem Res; 2013 Mar; 46(3):782-91. PubMed ID: 23194178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of Multiple Linear Regressions and Neural Networks based QSAR models for the design of new antitubercular compounds.
    Ventura C; Latino DA; Martins F
    Eur J Med Chem; 2013; 70():831-45. PubMed ID: 24246731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accurate and interpretable nanoSAR models from genetic programming-based decision tree construction approaches.
    Oksel C; Winkler DA; Ma CY; Wilkins T; Wang XZ
    Nanotoxicology; 2016 Sep; 10(7):1001-12. PubMed ID: 26956430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytotoxic effects of aggregated nanomaterials.
    Soto K; Garza KM; Murr LE
    Acta Biomater; 2007 May; 3(3):351-8. PubMed ID: 17275430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The cytotoxicity of nanomaterials: Modeling multiple human cells uptake of functionalized magneto-fluorescent nanoparticles via nano-QSAR.
    Qi R; Pan Y; Cao J; Jia Z; Jiang J
    Chemosphere; 2020 Jun; 249():126175. PubMed ID: 32078856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling the toxicity of a large set of metal and metal oxide nanoparticles using the OCHEM platform.
    Kovalishyn V; Abramenko N; Kopernyk I; Charochkina L; Metelytsia L; Tetko IV; Peijnenburg W; Kustov L
    Food Chem Toxicol; 2018 Feb; 112():507-517. PubMed ID: 28802948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anticancer activity of selected phenolic compounds: QSAR studies using ridge regression and neural networks.
    Nandi S; Vracko M; Bagchi MC
    Chem Biol Drug Des; 2007 Nov; 70(5):424-36. PubMed ID: 17949360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytotoxicity of zinc oxide (ZnO) nanoparticles is influenced by cell density and culture format.
    Heng BC; Zhao X; Xiong S; Ng KW; Boey FY; Loo JS
    Arch Toxicol; 2011 Jun; 85(6):695-704. PubMed ID: 20938647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relating nanomaterial properties and microbial toxicity.
    Suresh AK; Pelletier DA; Doktycz MJ
    Nanoscale; 2013 Jan; 5(2):463-74. PubMed ID: 23203029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.