BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 24625380)

  • 1. Is it safe to discharge treated proliferative diabetic retinopathy patients from the hospital eye service to a community screening programme?
    Negretti GS; Vafidis GC
    Eye (Lond); 2014 Jun; 28(6):696-700. PubMed ID: 24625380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Topographical Response of Retinal Neovascularization to Aflibercept or Panretinal Photocoagulation in Proliferative Diabetic Retinopathy: Post Hoc Analysis of the CLARITY Randomized Clinical Trial.
    Halim S; Nugawela M; Chakravarthy U; Peto T; Madhusudhan S; Lenfestey P; Hamill B; Zheng Y; Parry D; Nicholson L; Greenwood J; Sivaprasad S
    JAMA Ophthalmol; 2021 May; 139(5):501-507. PubMed ID: 33704351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characteristics of Retinal Neovascularization in Proliferative Diabetic Retinopathy Imaged by Optical Coherence Tomography Angiography.
    Ishibazawa A; Nagaoka T; Yokota H; Takahashi A; Omae T; Song YS; Takahashi T; Yoshida A
    Invest Ophthalmol Vis Sci; 2016 Nov; 57(14):6247-6255. PubMed ID: 27849310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Retinal Nonperfusion Characteristics on Ultra-Widefield Angiography in Eyes With Severe Nonproliferative Diabetic Retinopathy and Proliferative Diabetic Retinopathy.
    Nicholson L; Ramu J; Chan EW; Bainbridge JW; Hykin PG; Talks SJ; Sivaprasad S
    JAMA Ophthalmol; 2019 Jun; 137(6):626-631. PubMed ID: 30973596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Topographic distribution of retinal neovascularization in proliferative diabetic retinopathy using ultra-wide field angiography.
    Nidhi V; Verma S; Shaikh N; Azad SV; Chawla R; Venkatesh P; Vohra R; Kumar V
    Indian J Ophthalmol; 2023 Aug; 71(8):3080-3084. PubMed ID: 37530284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Longitudinal Wide-Field Swept-Source OCT Angiography of Neovascularization in Proliferative Diabetic Retinopathy after Panretinal Photocoagulation.
    Russell JF; Shi Y; Hinkle JW; Scott NL; Fan KC; Lyu C; Gregori G; Rosenfeld PJ
    Ophthalmol Retina; 2019 Apr; 3(4):350-361. PubMed ID: 31014688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distribution of Diabetic Neovascularization on Ultra-Widefield Fluorescein Angiography and on Simulated Widefield OCT Angiography.
    Russell JF; Flynn HW; Sridhar J; Townsend JH; Shi Y; Fan KC; Scott NL; Hinkle JW; Lyu C; Gregori G; Russell SR; Rosenfeld PJ
    Am J Ophthalmol; 2019 Nov; 207():110-120. PubMed ID: 31194952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wide-field optical coherence tomography angiography for the detection of proliferative diabetic retinopathy.
    Pichi F; Smith SD; Abboud EB; Neri P; Woodstock E; Hay S; Levine E; Baumal CR
    Graefes Arch Clin Exp Ophthalmol; 2020 Sep; 258(9):1901-1909. PubMed ID: 32474692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ranibizumab Plus Panretinal Photocoagulation versus Panretinal Photocoagulation Alone for High-Risk Proliferative Diabetic Retinopathy (PROTEUS Study).
    Figueira J; Fletcher E; Massin P; Silva R; Bandello F; Midena E; Varano M; Sivaprasad S; Eleftheriadis H; Menon G; Amaro M; Ayello Scheer S; Creuzot-Garcher C; Nascimento J; Alves D; Nunes S; Lobo C; Cunha-Vaz J;
    Ophthalmology; 2018 May; 125(5):691-700. PubMed ID: 29395119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical Coherence Tomography Angiography Findings in Proliferative Diabetic Retinopathy.
    Kilani A; Werner JU; Lang GK; Lang GE
    Ophthalmologica; 2021; 244(3):258-264. PubMed ID: 33902045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution of Nonperfusion and Neovascularization on Ultrawide-Field Fluorescein Angiography in Proliferative Diabetic Retinopathy (RECOVERY Study): Report 1.
    Fan W; Nittala MG; Velaga SB; Hirano T; Wykoff CC; Ip M; Lampen SIR; van Hemert J; Fleming A; Verhoek M; Sadda SR
    Am J Ophthalmol; 2019 Oct; 206():154-160. PubMed ID: 31078541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison Between Graders in Detection of Diabetic Neovascularization With Swept Source Optical Coherence Tomography Angiography and Fluorescein Angiography.
    Al-Khersan H; Russell JF; Lazzarini TA; Scott NL; Hinkle JW; Patel NA; Yannuzzi NA; Fowler BJ; Hussain RM; Barikian A; Sridhar J; Russell SR; Haddock LJ; Smiddy WE; Hariprasad SM; Shi Y; Wang L; Feuer W; Gregori G; Rosenfeld PJ
    Am J Ophthalmol; 2021 Apr; 224():292-300. PubMed ID: 33309812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NOVEL THREE TYPES OF NEOVASCULARIZATION ELSEWHERE DETERMINE THE DIFFERENTIAL CLINICAL FEATURES OF PROLIFERATIVE DIABETIC RETINOPATHY.
    Pan J; Chen F; Chen D; Yang X; Wang J; Chen Z; He X; Zhou T; Zheng J; Chen H
    Retina; 2021 Jun; 41(6):1265-1274. PubMed ID: 33136976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observation of retinal neovascularization using optical coherence tomography angiography after panretinal photocoagulation for proliferative diabetic retinopathy.
    Feng HE; Weihong YU; Dong F
    BMC Ophthalmol; 2021 Jun; 21(1):252. PubMed ID: 34098891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of regression of retinal neovascularisation after panretinal photocoagulation for proliferative diabetic retinopathy.
    Chatziralli IP; Sergentanis TN; Sivaprasad S
    Graefes Arch Clin Exp Ophthalmol; 2016 Sep; 254(9):1715-21. PubMed ID: 26802035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Widefield optical coherence tomography angiography for early detection and objective evaluation of proliferative diabetic retinopathy.
    Khalid H; Schwartz R; Nicholson L; Huemer J; El-Bradey MH; Sim DA; Patel PJ; Balaskas K; Hamilton RD; Keane PA; Rajendram R
    Br J Ophthalmol; 2021 Jan; 105(1):118-123. PubMed ID: 32193221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensitivity and specificity of pseudocolor ultrawide field imaging in comparison to wide field fundus fluorescein angiography in detecting retinal neovascularization in diabetic retinopathy.
    Haridas S; Indurkhya S; Kumar S; Giridhar A; Sivaprasad S
    Eye (Lond); 2022 Oct; 36(10):1940-1944. PubMed ID: 34584231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anti-VEGF Therapy for Persistent Neovascularization after Complete Panretinal Photocoagulation in Proliferative Diabetic Retinopathy.
    Mehanna CJ; Abdul Fattah M; Haddad S; Tamim H; Ghazi N; Salti H
    Ophthalmol Retina; 2019 Jun; 3(6):473-477. PubMed ID: 31174668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. WF SS-OCTA for detecting diabetic retinopathy and evaluating the effect of photocoagulation on posterior vitreous detachment.
    Gong Y; Hu L; Wang L; Shao Y; Li X
    Front Endocrinol (Lausanne); 2022; 13():1029066. PubMed ID: 36531502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retinal Nonperfusion in Proliferative Diabetic Retinopathy Before and After Panretinal Photocoagulation Assessed by Widefield OCT Angiography.
    Russell JF; Al-Khersan H; Shi Y; Scott NL; Hinkle JW; Fan KC; Lyu C; Feuer WJ; Gregori G; Rosenfeld PJ
    Am J Ophthalmol; 2020 May; 213():177-185. PubMed ID: 32006481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.