These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 2462559)
61. Activity of simian DNA-binding factors is altered in the presence of simian virus 40 (SV40) early proteins: characterization of factors binding to elements involved in activation of the SV40 late promoter. Gallo GJ; Gruda MC; Manuppello JR; Alwine JC J Virol; 1990 Jan; 64(1):173-84. PubMed ID: 2152810 [TBL] [Abstract][Full Text] [Related]
62. Activity of single-stranded DNA endonucleases in mung bean is associated with cell division. Grafi G; Larkins BA Plant Mol Biol; 1995 Nov; 29(4):703-10. PubMed ID: 8541497 [TBL] [Abstract][Full Text] [Related]
63. Nuclease recognition of an alternating structure in a d(AT)14 plasmid insert. Suggs JW; Wagner RW Nucleic Acids Res; 1986 May; 14(9):3703-16. PubMed ID: 3012479 [TBL] [Abstract][Full Text] [Related]
64. Intermediate range effects in DNA. I: Low pH/stress induced conformational changes in the vicinity of an extruded d(AT)n.d(AT) in cruciform. Glover JN; Haniford DB; Pulleyblank DE Nucleic Acids Res; 1988 Jun; 16(12):5473-90. PubMed ID: 3387239 [TBL] [Abstract][Full Text] [Related]
65. Location of the T4 gene 32 protein binding site on simian virus 40 DNA. Morrow JF; Berg P J Virol; 1973 Dec; 12(6):1631-2. PubMed ID: 4357523 [TBL] [Abstract][Full Text] [Related]
66. Initiation of heteroduplex-loop repair by T4-encoded endonuclease VII in vitro. Kleff S; Kemper B EMBO J; 1988 May; 7(5):1527-35. PubMed ID: 3409872 [TBL] [Abstract][Full Text] [Related]
67. Palindrome regeneration by template strand-switching mechanism at the origin of DNA replication of porcine circovirus via the rolling-circle melting-pot replication model. Cheung AK J Virol; 2004 Sep; 78(17):9016-29. PubMed ID: 15308698 [TBL] [Abstract][Full Text] [Related]
68. In vitro processing of heteroduplex loops and mismatches by endonuclease VII. Birkenkamp K; Kemper B DNA Res; 1995; 2(1):9-14. PubMed ID: 7788530 [TBL] [Abstract][Full Text] [Related]
69. Initiation of rolling-circle replication in pT181 plasmid: initiator protein enhances cruciform extrusion at the origin. Noirot P; Bargonetti J; Novick RP Proc Natl Acad Sci U S A; 1990 Nov; 87(21):8560-4. PubMed ID: 2236066 [TBL] [Abstract][Full Text] [Related]
70. Isolation of Z-DNA binding proteins from SV40 minichromosomes: evidence for binding to the viral control region. Azorin F; Rich A Cell; 1985 Jun; 41(2):365-74. PubMed ID: 2985275 [TBL] [Abstract][Full Text] [Related]
71. The interaction of adenosine diphosphoribosyl transferase (ADPRT) with a cruciform DNA. Sastry SS; Kun E Biochem Biophys Res Commun; 1990 Mar; 167(2):842-7. PubMed ID: 2108672 [TBL] [Abstract][Full Text] [Related]
72. Crp1p, a new cruciform DNA-binding protein in the yeast Saccharomyces cerevisiae. Rass U; Kemper B J Mol Biol; 2002 Nov; 323(4):685-700. PubMed ID: 12419258 [TBL] [Abstract][Full Text] [Related]
73. Bacteriophage T7 DNA packaging. I. Plasmids containing a T7 replication origin and the T7 concatemer junction are packaged into transducing particles during phage infection. Chung YB; Hinkle DC J Mol Biol; 1990 Dec; 216(4):911-26. PubMed ID: 2266562 [TBL] [Abstract][Full Text] [Related]
74. Induction of double-strand breaks by S1 nuclease, mung bean nuclease and nuclease P1 in DNA containing abasic sites and nicks. Chaudhry MA; Weinfeld M Nucleic Acids Res; 1995 Oct; 23(19):3805-9. PubMed ID: 7479020 [TBL] [Abstract][Full Text] [Related]
75. DNA transitions induced by binding of PARP-1 to cruciform structures in supercoiled plasmids. Chasovskikh S; Dimtchev A; Smulson M; Dritschilo A Cytometry A; 2005 Nov; 68(1):21-7. PubMed ID: 16200639 [TBL] [Abstract][Full Text] [Related]
76. Anti-cruciform DNA affinity purification of active mammalian origins of replication. Bell D; Sabloff M; Zannis-Hadjopoulos M; Price G Biochim Biophys Acta; 1991 Jul; 1089(3):299-308. PubMed ID: 1859833 [TBL] [Abstract][Full Text] [Related]
77. Cruciform formation in a negatively supercoiled DNA may be kinetically forbidden under physiological conditions. Courey AJ; Wang JC Cell; 1983 Jul; 33(3):817-29. PubMed ID: 6871994 [TBL] [Abstract][Full Text] [Related]
78. The structure of cruciforms in supercoiled DNA: probing the single-stranded character of nucleotide bases with bisulphite. Gough GW; Sullivan KM; Lilley DM EMBO J; 1986 Jan; 5(1):191-6. PubMed ID: 3007115 [TBL] [Abstract][Full Text] [Related]
79. Effects of salts, temperature, and stem length on supercoil-induced formation of cruciforms. Singleton CK J Biol Chem; 1983 Jun; 258(12):7661-8. PubMed ID: 6863259 [TBL] [Abstract][Full Text] [Related]
80. A site-targeted recombinant nuclease probe of DNA structure. Panayotatos N; Bãckman S J Biol Chem; 1989 Sep; 264(25):15070-3. PubMed ID: 2788652 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]