BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 24625644)

  • 1. Evolutionary capacity of upper thermal limits: beyond single trait assessments.
    Blackburn S; van Heerwaarden B; Kellermann V; Sgrò CM
    J Exp Biol; 2014 Jun; 217(Pt 11):1918-24. PubMed ID: 24625644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multivariate analysis of adaptive capacity for upper thermal limits in Drosophila simulans.
    van Heerwaarden B; Sgrò CM
    J Evol Biol; 2013 Apr; 26(4):800-9. PubMed ID: 23517493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comprehensive assessment of geographic variation in heat tolerance and hardening capacity in populations of Drosophila melanogaster from eastern Australia.
    Sgrò CM; Overgaard J; Kristensen TN; Mitchell KA; Cockerell FE; Hoffmann AA
    J Evol Biol; 2010 Nov; 23(11):2484-93. PubMed ID: 20874849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ecologically relevant measures of tolerance to potentially lethal temperatures.
    Terblanche JS; Hoffmann AA; Mitchell KA; Rako L; le Roux PC; Chown SL
    J Exp Biol; 2011 Nov; 214(Pt 22):3713-25. PubMed ID: 22031735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A multivariate test of evolutionary constraints for thermal tolerance in Drosophila melanogaster.
    Williams BR; VAN Heerwaarden B; Dowling DK; Sgrò CM
    J Evol Biol; 2012 Jul; 25(7):1415-26. PubMed ID: 22587877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increases in the evolutionary potential of upper thermal limits under warmer temperatures in two rainforest Drosophila species.
    van Heerwaarden B; Malmberg M; Sgrò CM
    Evolution; 2016 Feb; 70(2):456-64. PubMed ID: 26703976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellular damage as induced by high temperature is dependent on rate of temperature change - investigating consequences of ramping rates on molecular and organismal phenotypes in Drosophila melanogaster.
    Sørensen JG; Loeschcke V; Kristensen TN
    J Exp Biol; 2013 Mar; 216(Pt 5):809-14. PubMed ID: 23155086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complex patterns of local adaptation in heat tolerance in Drosophila simulans from eastern Australia.
    van Heerwaarden B; Lee RF; Wegener B; Weeks AR; Sgró CM
    J Evol Biol; 2012 Sep; 25(9):1765-78. PubMed ID: 22775577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Drosophila laboratory evolution experiment points to low evolutionary potential under increased temperatures likely to be experienced in the future.
    Schou MF; Kristensen TN; Kellermann V; Schlötterer C; Loeschcke V
    J Evol Biol; 2014 Sep; 27(9):1859-68. PubMed ID: 24925446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validity of thermal ramping assays used to assess thermal tolerance in arthropods.
    Overgaard J; Kristensen TN; Sørensen JG
    PLoS One; 2012; 7(3):e32758. PubMed ID: 22427876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct and correlated effects of selection on flight after exposure to thermal stress in Drosophila melanogaster.
    Krebs RA; Thompson KA
    Genetica; 2006; 128(1-3):217-25. PubMed ID: 17028952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Testing the thermal limits: Non-linear reaction norms drive disparate thermal acclimation responses in Drosophila melanogaster.
    Salachan PV; Burgaud H; Sørensen JG
    J Insect Physiol; 2019 Oct; 118():103946. PubMed ID: 31525352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionary potential of thermal preference and heat tolerance in Drosophila subobscura.
    Castañeda LE; Romero-Soriano V; Mesas A; Roff DA; Santos M
    J Evol Biol; 2019 Aug; 32(8):818-824. PubMed ID: 31038253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Latitudinal clines in heat tolerance, protein synthesis rate and transcript level of a candidate gene in Drosophila melanogaster.
    Cockerell FE; Sgrò CM; McKechnie SW
    J Insect Physiol; 2014 Jan; 60():136-44. PubMed ID: 24333150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological climatic limits in Drosophila: patterns and implications.
    Hoffmann AA
    J Exp Biol; 2010 Mar; 213(6):870-80. PubMed ID: 20190112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Constraints, independence, and evolution of thermal plasticity: probing genetic architecture of long- and short-term thermal acclimation.
    Gerken AR; Eller OC; Hahn DA; Morgan TJ
    Proc Natl Acad Sci U S A; 2015 Apr; 112(14):4399-404. PubMed ID: 25805817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparative analysis of the upper thermal tolerance limits of eastern Pacific porcelain crabs, genus Petrolisthes: influences of latitude, vertical zonation, acclimation, and phylogeny.
    Stillman JH; Somero GN
    Physiol Biochem Zool; 2000; 73(2):200-8. PubMed ID: 10801398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How much starvation, desiccation and oxygen depletion can Drosophila melanogaster tolerate before its upper thermal limits are affected?
    Manenti T; Cunha TR; Sørensen JG; Loeschcke V
    J Insect Physiol; 2018; 111():1-7. PubMed ID: 30273554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental evolution on heat tolerance and thermal performance curves under contrasting thermal selection in Drosophila subobscura.
    Mesas A; Jaramillo A; Castañeda LE
    J Evol Biol; 2021 May; 34(5):767-778. PubMed ID: 33662149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drawing the line: Linear or non-linear reaction norms in response to adult acclimation on lower thermal limits.
    Sørensen JG; Winther ML; Salachan PV; MacLean HJ
    J Insect Physiol; 2020 Jul; 124():104075. PubMed ID: 32540466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.