These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 24625644)

  • 41. Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming.
    Gunderson AR; Stillman JH
    Proc Biol Sci; 2015 Jun; 282(1808):20150401. PubMed ID: 25994676
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine 'winners' and 'losers'.
    Somero GN
    J Exp Biol; 2010 Mar; 213(6):912-20. PubMed ID: 20190116
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Adult heat tolerance variation in Drosophila melanogaster is not related to Hsp70 expression.
    Jensen LT; Cockerell FE; Kristensen TN; Rako L; Loeschcke V; McKechnie SW; Hoffmann AA
    J Exp Zool A Ecol Genet Physiol; 2010 Jan; 313(1):35-44. PubMed ID: 19739085
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Critical thermal limits affected differently by developmental and adult thermal fluctuations.
    Salachan PV; Sørensen JG
    J Exp Biol; 2017 Dec; 220(Pt 23):4471-4478. PubMed ID: 28982965
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The importance of physiological limits in determining biogeographical range shifts due to global climate change: the heat-shock response.
    Tomanek L
    Physiol Biochem Zool; 2008; 81(6):709-17. PubMed ID: 18844483
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Physiological responses to short-term thermal stress in mayfly (
    Kim KS; Chou H; Funk DH; Jackson JK; Sweeney BW; Buchwalter DB
    J Exp Biol; 2017 Jul; 220(Pt 14):2598-2605. PubMed ID: 28724704
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Disparate patterns of thermal adaptation between life stages in temperate vs. tropical Drosophila melanogaster.
    Lockwood BL; Gupta T; Scavotto R
    J Evol Biol; 2018 Feb; 31(2):323-331. PubMed ID: 29284184
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Can evolution of sexual dimorphism be triggered by developmental temperatures?
    Ketola T; Kristensen TN; Kellermann VM; Loeschcke V
    J Evol Biol; 2012 May; 25(5):847-55. PubMed ID: 22356559
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The evolution of critical thermal limits of life on Earth.
    Bennett JM; Sunday J; Calosi P; Villalobos F; Martínez B; Molina-Venegas R; Araújo MB; Algar AC; Clusella-Trullas S; Hawkins BA; Keith SA; Kühn I; Rahbek C; Rodríguez L; Singer A; Morales-Castilla I; Olalla-Tárraga MÁ
    Nat Commun; 2021 Feb; 12(1):1198. PubMed ID: 33608528
    [TBL] [Abstract][Full Text] [Related]  

  • 50. High-temperature stress and the evolution of thermal resistance in Drosophila.
    Loeschcke V; Krebs RA; Dahlgaard J; Michalak P
    EXS; 1997; 83():175-90. PubMed ID: 9342849
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Upper thermal tolerance of closely related Danio species.
    Sidhu R; Anttila K; Farrell AP
    J Fish Biol; 2014 Apr; 84(4):982-95. PubMed ID: 24689673
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A unifying model to estimate thermal tolerance limits in ectotherms across static, dynamic and fluctuating exposures to thermal stress.
    Jørgensen LB; Malte H; Ørsted M; Klahn NA; Overgaard J
    Sci Rep; 2021 Jun; 11(1):12840. PubMed ID: 34145337
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ontogenetic thermal tolerance and performance of ectotherms at variable temperatures.
    Cavieres G; Bogdanovich JM; Bozinovic F
    J Evol Biol; 2016 Jul; 29(7):1462-8. PubMed ID: 27118598
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Candidate genes and thermal phenotypes: identifying ecologically important genetic variation for thermotolerance in the Australian Drosophila melanogaster cline.
    Rako L; Blacket MJ; McKechnie SW; Hoffmann AA
    Mol Ecol; 2007 Jul; 16(14):2948-57. PubMed ID: 17614909
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Spatial analysis of gene regulation reveals new insights into the molecular basis of upper thermal limits.
    Telonis-Scott M; Clemson AS; Johnson TK; Sgrò CM
    Mol Ecol; 2014 Dec; 23(24):6135-51. PubMed ID: 25401770
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A positive genetic correlation between hypoxia tolerance and heat tolerance supports a controversial theory of heat stress.
    Teague C; Youngblood JP; Ragan K; Angilletta MJ; VandenBrooks JM
    Biol Lett; 2017 Nov; 13(11):. PubMed ID: 29118239
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Thermal tolerance trade-offs associated with the right arm of chromosome 3 and marked by the hsr-omega gene in Drosophila melanogaster.
    Anderson AR; Collinge JE; Hoffmann AA; Kellett M; McKechnie SW
    Heredity (Edinb); 2003 Feb; 90(2):195-202. PubMed ID: 12634827
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Rapid decline of cold tolerance at young age is associated with expression of stress genes in Drosophila melanogaster.
    Colinet H; Siaussat D; Bozzolan F; Bowler K
    J Exp Biol; 2013 Jan; 216(Pt 2):253-9. PubMed ID: 22996448
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Metabolic and molecular stress responses of sublittoral bearded horse mussel Modiolus barbatus to warming sea water: implications for vertical zonation.
    Anestis A; Pörtner HO; Lazou A; Michaelidis B
    J Exp Biol; 2008 Sep; 211(Pt 17):2889-98. PubMed ID: 18723548
    [TBL] [Abstract][Full Text] [Related]  

  • 60. QTL for the thermotolerance effect of heat hardening, knockdown resistance to heat and chill-coma recovery in an intercontinental set of recombinant inbred lines of Drosophila melanogaster.
    Norry FM; Scannapieco AC; Sambucetti P; Bertoli CI; Loeschcke V
    Mol Ecol; 2008 Oct; 17(20):4570-81. PubMed ID: 18986501
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.