These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
292 related articles for article (PubMed ID: 24625645)
1. The cost of muscle power production: muscle oxygen consumption per unit work increases at low temperatures in Xenopus laevis. Seebacher F; Tallis JA; James RS J Exp Biol; 2014 Jun; 217(Pt 11):1940-5. PubMed ID: 24625645 [TBL] [Abstract][Full Text] [Related]
2. Thermal acclimation of locomotor performance in tadpoles and adults of the aquatic frog Xenopus laevis. Wilson RS; James RS; Johnston IA J Comp Physiol B; 2000 Mar; 170(2):117-24. PubMed ID: 10791571 [TBL] [Abstract][Full Text] [Related]
3. The influence of thermal acclimation on power production during swimming. II. Mechanics of scup red muscle under in vivo conditions. Swank DM; Rome LC J Exp Biol; 2001 Feb; 204(Pt 3):419-30. PubMed ID: 11171295 [TBL] [Abstract][Full Text] [Related]
4. The effect of temperature and thermal acclimation on the sustainable performance of swimming scup. Rome LC Philos Trans R Soc Lond B Biol Sci; 2007 Nov; 362(1487):1995-2016. PubMed ID: 17553779 [TBL] [Abstract][Full Text] [Related]
5. Physiology of invasion: cane toads are constrained by thermal effects on physiological mechanisms that support locomotor performance. Seebacher F; Franklin CE J Exp Biol; 2011 May; 214(Pt 9):1437-44. PubMed ID: 21490252 [TBL] [Abstract][Full Text] [Related]
6. The influence of thermal acclimation on power production during swimming. I. In vivo stimulation and length change pattern of scup red muscle. Rome LC; Swank DM J Exp Biol; 2001 Feb; 204(Pt 3):409-18. PubMed ID: 11171294 [TBL] [Abstract][Full Text] [Related]
7. Metabolism, swimming performance, and tissue biochemistry of high desert redband trout (Oncorhynchus mykiss ssp.): evidence for phenotypic differences in physiological function. Gamperl AK; Rodnick KJ; Faust HA; Venn EC; Bennett MT; Crawshaw LI; Keeley ER; Powell MS; Li HW Physiol Biochem Zool; 2002; 75(5):413-31. PubMed ID: 12529843 [TBL] [Abstract][Full Text] [Related]
8. Effects of acclimation temperature and cadmium exposure on cellular energy budgets in the marine mollusk Crassostrea virginica: linking cellular and mitochondrial responses. Cherkasov AS; Biswas PK; Ridings DM; Ringwood AH; Sokolova IM J Exp Biol; 2006 Apr; 209(Pt 7):1274-84. PubMed ID: 16547299 [TBL] [Abstract][Full Text] [Related]
9. Thermal acclimation to cold alters myosin content and contractile properties of rainbow smelt, Osmerus mordax, red muscle. Coughlin DJ; Shiels LP; Nuthakki S; Shuman JL Comp Biochem Physiol A Mol Integr Physiol; 2016 Jun; 196():46-53. PubMed ID: 26945595 [TBL] [Abstract][Full Text] [Related]
10. Acclimation temperature alters the relationship between growth and swimming performance among juvenile common carp (Cyprinus carpio). Pang X; Fu SJ; Zhang YG Comp Biochem Physiol A Mol Integr Physiol; 2016 Sep; 199():111-119. PubMed ID: 27312325 [TBL] [Abstract][Full Text] [Related]
11. Compensation for environmental change by complementary shifts of thermal sensitivity and thermoregulatory behaviour in an ectotherm. Glanville EJ; Seebacher F J Exp Biol; 2006 Dec; 209(Pt 24):4869-77. PubMed ID: 17142675 [TBL] [Abstract][Full Text] [Related]
12. Antarctic fish can compensate for rising temperatures: thermal acclimation of cardiac performance in Pagothenia borchgrevinki. Franklin CE; Davison W; Seebacher F J Exp Biol; 2007 Sep; 210(Pt 17):3068-74. PubMed ID: 17704081 [TBL] [Abstract][Full Text] [Related]
13. Cold and muscle performance. Ferretti G Int J Sports Med; 1992 Oct; 13 Suppl 1():S185-7. PubMed ID: 1483770 [TBL] [Abstract][Full Text] [Related]
14. The effects of acute temperature change on swimming performance in bluegill sunfish Lepomis macrochirus. Jones EA; Jong AS; Ellerby DJ J Exp Biol; 2008 May; 211(Pt 9):1386-93. PubMed ID: 18424672 [TBL] [Abstract][Full Text] [Related]
15. Red muscle function and thermal acclimation to cold in rainbow smelt, Osmerus mordax, and rainbow trout, Oncorhynchus mykiss. Shuman JL; Coughlin DJ J Exp Zool A Ecol Integr Physiol; 2018 Dec; 329(10):547-556. PubMed ID: 30101480 [TBL] [Abstract][Full Text] [Related]
16. Warmer is better: thermal sensitivity of both maximal and sustained power output in the iliotibialis muscle isolated from adult Xenopus tropicalis. James RS; Tallis J; Herrel A; Bonneaud C J Exp Biol; 2012 Feb; 215(Pt 3):552-8. PubMed ID: 22246264 [TBL] [Abstract][Full Text] [Related]
17. Does the thermal plasticity of metabolic enzymes underlie thermal compensation of locomotor performance in the eastern newt (Notophthalmus viridescens)? Mineo PM; Schaeffer PJ J Exp Zool A Ecol Genet Physiol; 2015 Jan; 323(1):52-9. PubMed ID: 25382581 [TBL] [Abstract][Full Text] [Related]
18. Physiological plasticity of cardiorespiratory function in a eurythermal marine teleost, the longjaw mudsucker, Gillichthys mirabilis. Jayasundara N; Somero GN J Exp Biol; 2013 Jun; 216(Pt 11):2111-21. PubMed ID: 23678101 [TBL] [Abstract][Full Text] [Related]
19. Beneficial acclimation: sex specific thermal acclimation of metabolic capacity in the striped marsh frog (Limnodynastes peronii). Rogers KD; Thompson MB; Seebacher F J Exp Biol; 2007 Aug; 210(Pt 16):2932-8. PubMed ID: 17690242 [TBL] [Abstract][Full Text] [Related]