BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 24625665)

  • 1. Carvacrol and trans-cinnamaldehyde reduce Clostridium difficile toxin production and cytotoxicity in vitro.
    Mooyottu S; Kollanoor-Johny A; Flock G; Bouillaut L; Upadhyay A; Sonenshein AL; Venkitanarayanan K
    Int J Mol Sci; 2014 Mar; 15(3):4415-30. PubMed ID: 24625665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carvacrol reduces Clostridium difficile sporulation and spore outgrowth in vitro.
    Mooyottu S; Flock G; Venkitanarayanan K
    J Med Microbiol; 2017 Aug; 66(8):1229-1234. PubMed ID: 28786786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling Aspergillus flavus and Aspergillus parasiticus growth and aflatoxin production in poultry feed using carvacrol and trans-cinnamaldehyde.
    Yin HB; Chen CH; Kollanoor-Johny A; Darre MJ; Venkitanarayanan K
    Poult Sci; 2015 Sep; 94(9):2183-90. PubMed ID: 26217023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro efficacy of sodium selenite in reducing toxin production, spore outgrowth and antibiotic resistance in hypervirulent Clostridium difficile.
    Pellissery AJ; Vinayamohan PG; Yin HB; Mooyottu S; Venkitanarayanan K
    J Med Microbiol; 2019 Jul; 68(7):1118-1128. PubMed ID: 31172910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tigecycline suppresses toxin A and B production and sporulation in Clostridium difficile.
    Aldape MJ; Heeney DD; Bryant AE; Stevens DL
    J Antimicrob Chemother; 2015 Jan; 70(1):153-9. PubMed ID: 25151204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human hypervirulent Clostridium difficile strains exhibit increased sporulation as well as robust toxin production.
    Merrigan M; Venugopal A; Mallozzi M; Roxas B; Viswanathan VK; Johnson S; Gerding DN; Vedantam G
    J Bacteriol; 2010 Oct; 192(19):4904-11. PubMed ID: 20675495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spo0A differentially regulates toxin production in evolutionarily diverse strains of Clostridium difficile.
    Mackin KE; Carter GP; Howarth P; Rood JI; Lyras D
    PLoS One; 2013; 8(11):e79666. PubMed ID: 24236153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of sub-MIC concentrations of metronidazole, vancomycin, clindamycin and linezolid on toxin gene transcription and production in Clostridium difficile.
    Gerber M; Walch C; Löffler B; Tischendorf K; Reischl U; Ackermann G
    J Med Microbiol; 2008 Jun; 57(Pt 6):776-783. PubMed ID: 18480337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toxins, butyric acid, and other short-chain fatty acids are coordinately expressed and down-regulated by cysteine in Clostridium difficile.
    Karlsson S; Lindberg A; Norin E; Burman LG; Akerlund T
    Infect Immun; 2000 Oct; 68(10):5881-8. PubMed ID: 10992498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Horizontal gene transfer converts non-toxigenic Clostridium difficile strains into toxin producers.
    Brouwer MS; Roberts AP; Hussain H; Williams RJ; Allan E; Mullany P
    Nat Commun; 2013; 4():2601. PubMed ID: 24131955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The second messenger cyclic Di-GMP regulates Clostridium difficile toxin production by controlling expression of sigD.
    McKee RW; Mangalea MR; Purcell EB; Borchardt EK; Tamayo R
    J Bacteriol; 2013 Nov; 195(22):5174-85. PubMed ID: 24039264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ebselen Not Only Inhibits Clostridioides difficile Toxins but Displays Redox-Associated Cellular Killing.
    Marreddy RKR; Olaitan AO; May JN; Dong M; Hurdle JG
    Microbiol Spectr; 2021 Oct; 9(2):e0044821. PubMed ID: 34468187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of CodY protein on metabolism, sporulation and virulence in Clostridioides difficile ribotype 027.
    Daou N; Wang Y; Levdikov VM; Nandakumar M; Livny J; Bouillaut L; Blagova E; Zhang K; Belitsky BR; Rhee K; Wilkinson AJ; Sun X; Sonenshein AL
    PLoS One; 2019; 14(1):e0206896. PubMed ID: 30699117
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Pellissery AJ; Vinayamohan PG; Venkitanarayanan K
    J Med Microbiol; 2020 Apr; 69(4):631-639. PubMed ID: 32216868
    [No Abstract]   [Full Text] [Related]  

  • 15. Increased toxin expression in a Clostridium difficile mfd mutant.
    Willing SE; Richards EJ; Sempere L; Dale AG; Cutting SM; Fairweather NF
    BMC Microbiol; 2015 Dec; 15():280. PubMed ID: 26679502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TcdC does not significantly repress toxin expression in Clostridium difficile 630ΔErm.
    Bakker D; Smits WK; Kuijper EJ; Corver J
    PLoS One; 2012; 7(8):e43247. PubMed ID: 22912837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensitivity to antibiotics of Clostridium difficile toxigenic nosocomial strains.
    Beran V; Chmelar D; Vobejdova J; Konigova A; Nemec J; Tvrdik J
    Folia Microbiol (Praha); 2014 May; 59(3):209-15. PubMed ID: 24114414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the SigD regulon of C. difficile and its positive control of toxin production through the regulation of tcdR.
    El Meouche I; Peltier J; Monot M; Soutourina O; Pestel-Caron M; Dupuy B; Pons JL
    PLoS One; 2013; 8(12):e83748. PubMed ID: 24358307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prophage-stimulated toxin production in Clostridium difficile NAP1/027 lysogens.
    Sekulovic O; Meessen-Pinard M; Fortier LC
    J Bacteriol; 2011 Jun; 193(11):2726-34. PubMed ID: 21441508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of ciprofloxacin on the expression and production of exotoxins by Clostridium difficile.
    Aldape MJ; Packham AE; Nute DW; Bryant AE; Stevens DL
    J Med Microbiol; 2013 May; 62(Pt 5):741-747. PubMed ID: 23429695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.