These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 24626031)

  • 1. Detailed investigations of polymer/metal multilayer matching layer and backing absorber structures for wideband ultrasonic transducers.
    Toda M; Thompson M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Feb; 59(2):231-42. PubMed ID: 24626031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel multi-layer polymer-metal structures for use in ultrasonic transducer impedance matching and backing absorber applications.
    Toda M; Thompson M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Dec; 57(12):2818-27. PubMed ID: 21156377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfabrication of stacks of acoustic matching layers for 15 MHz ultrasonic transducers.
    Manh T; Nguyen AT; Johansen TF; Hoff L
    Ultrasonics; 2014 Feb; 54(2):614-20. PubMed ID: 24041498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Narrowband impedance matching layer for high efficiency thickness mode ultrasonic transducers.
    Toda M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Mar; 49(3):299-306. PubMed ID: 12322878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design considerations for piezoelectric polymer ultrasound transducers.
    Brown LF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(6):1377-96. PubMed ID: 18238684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mass-spring matching layers for high-frequency ultrasound transducers: a new technique using vacuum deposition.
    Brown J; Sharma S; Leadbetter J; Cochran S; Adamson R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Nov; 61(11):1911-21. PubMed ID: 25389169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of acoustic impedances of multi matching layers for narrowband ultrasonic airborne transducers at frequencies <2.5 MHz - Application of a genetic algorithm.
    Saffar S; Abdullah A
    Ultrasonics; 2012 Jan; 52(1):169-85. PubMed ID: 21893329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental study of the acoustical properties of polymers utilized to construct PVDF ultrasonic transducers and the acousto-electric properties of PVDF and P(VDF/TrFE) films.
    Bloomfield PE; Lo WJ; Lewin PA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(6):1397-405. PubMed ID: 18238685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasonic imaging using air-coupled P(VDF/TrFE) transducers at 2 MHz.
    Takahashi S; Ohigashi H
    Ultrasonics; 2009 May; 49(4-5):495-8. PubMed ID: 19215951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High Acoustic Impedance and Attenuation Backing for High-Frequency Focused P(VDF-TrFE)-Based Transducers.
    Toffessi Siewe S; Callé S; Vander Meulen F; Valente D; Grégoire JM; Banquart A; Chevalliot S; Capri A; Levassort F
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lead zirconate titanate/poly(vinylidene fluoride-trifluoroethylene) 1-3 composites for ultrasonic transducer applications.
    Kwok KW; Chan HC; Choy CL
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(3):626-37. PubMed ID: 18238463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnesium Alloy Matching Layer for High-Performance Transducer Applications.
    Wang Y; Tao J; Guo F; Li S; Huang X; Dong J; Cao W
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30558141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfabricated 1-3 composite acoustic matching layers for 15 MHz transducers.
    Manh T; Jensen GU; Johansen TF; Hoff L
    Ultrasonics; 2013 Aug; 53(6):1141-9. PubMed ID: 23522684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of broadband poly(vinylidene difluoride-trifluroethylene) line-focus ultrasonic transducers for surface acoustic wave measurements of anisotropy of a (100) silicon wafer.
    Lu Y; He C; Song G; Wu B; Chung CH; Lee YC
    Ultrasonics; 2014 Jan; 54(1):296-304. PubMed ID: 23899826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimized Backing Layers Design for High Frequency Broad Bandwidth Ultrasonic Transducer.
    Hou C; Fei C; Li Z; Zhang S; Man J; Chen D; Wu R; Li D; Yang Y; Feng W
    IEEE Trans Biomed Eng; 2022 Jan; 69(1):475-481. PubMed ID: 34288870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New symmetric reflector ultrasonic transducers (SRUT).
    Toda M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Oct; 56(10):2311-9. PubMed ID: 19942517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Properties and characteristics of P(VDF/TrFE) transducers manufactured by a solution casting method for use in the MHz-range ultrasound in air.
    Takahashi S
    Ultrasonics; 2012 Mar; 52(3):422-6. PubMed ID: 22055342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Phase-Canceled Backing Layer for Ultrasound Linear Array Transducer: Modeling and Experimental Verification.
    Kwon DS; Sung JH; Park CY; Jeong EY; Jeong JS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Apr; 67(4):770-778. PubMed ID: 31689189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling of a novel high-impedance matching layer for high frequency (>30 MHz) ultrasonic transducers.
    Qian Y; Harris NR
    Ultrasonics; 2014 Feb; 54(2):586-91. PubMed ID: 24025461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of 20 MHz wideband piezoelectric transducers for close proximity imaging.
    Thiagarajan S; Jayawardena I; Martin RW
    Biomed Sci Instrum; 1991; 27():57-65. PubMed ID: 2065178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.