These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 24626091)
1. Maintaining glycogen synthase kinase-3 activity is critical for mTOR kinase inhibitors to inhibit cancer cell growth. Koo J; Yue P; Gal AA; Khuri FR; Sun SY Cancer Res; 2014 May; 74(9):2555-68. PubMed ID: 24626091 [TBL] [Abstract][Full Text] [Related]
2. GSK3 is required for rapalogs to induce degradation of some oncogenic proteins and to suppress cancer cell growth. Koo J; Wang X; Owonikoko TK; Ramalingam SS; Khuri FR; Sun SY Oncotarget; 2015 Apr; 6(11):8974-87. PubMed ID: 25797247 [TBL] [Abstract][Full Text] [Related]
3. Inhibition of mTOR complex 2 induces GSK3/FBXW7-dependent degradation of sterol regulatory element-binding protein 1 (SREBP1) and suppresses lipogenesis in cancer cells. Li S; Oh YT; Yue P; Khuri FR; Sun SY Oncogene; 2016 Feb; 35(5):642-50. PubMed ID: 25893295 [TBL] [Abstract][Full Text] [Related]
4. mTORC2 Suppresses GSK3-Dependent Snail Degradation to Positively Regulate Cancer Cell Invasion and Metastasis. Zhang S; Qian G; Zhang QQ; Yao Y; Wang D; Chen ZG; Wang LJ; Chen M; Sun SY Cancer Res; 2019 Jul; 79(14):3725-3736. PubMed ID: 31142514 [TBL] [Abstract][Full Text] [Related]
5. mTOR Complex 2 Stabilizes Mcl-1 Protein by Suppressing Its Glycogen Synthase Kinase 3-Dependent and SCF-FBXW7-Mediated Degradation. Koo J; Yue P; Deng X; Khuri FR; Sun SY Mol Cell Biol; 2015 Jul; 35(13):2344-55. PubMed ID: 25918246 [TBL] [Abstract][Full Text] [Related]
6. Rictor Undergoes Glycogen Synthase Kinase 3 (GSK3)-dependent, FBXW7-mediated Ubiquitination and Proteasomal Degradation. Koo J; Wu X; Mao Z; Khuri FR; Sun SY J Biol Chem; 2015 May; 290(22):14120-9. PubMed ID: 25897075 [TBL] [Abstract][Full Text] [Related]
8. Role of glycogen synthase kinase 3beta in rapamycin-mediated cell cycle regulation and chemosensitivity. Dong J; Peng J; Zhang H; Mondesire WH; Jian W; Mills GB; Hung MC; Meric-Bernstam F Cancer Res; 2005 Mar; 65(5):1961-72. PubMed ID: 15753396 [TBL] [Abstract][Full Text] [Related]
9. AZD2014, an Inhibitor of mTORC1 and mTORC2, Is Highly Effective in ER+ Breast Cancer When Administered Using Intermittent or Continuous Schedules. Guichard SM; Curwen J; Bihani T; D'Cruz CM; Yates JW; Grondine M; Howard Z; Davies BR; Bigley G; Klinowska T; Pike KG; Pass M; Chresta CM; Polanska UM; McEwen R; Delpuech O; Green S; Cosulich SC Mol Cancer Ther; 2015 Nov; 14(11):2508-18. PubMed ID: 26358751 [TBL] [Abstract][Full Text] [Related]
10. Molecular regulation of apoptotic machinery and lipid metabolism by mTORC1/mTORC2 dual inhibitors in preclinical models of HER2+/PIK3CAmut breast cancer. Qian J; Chen Y; Meng T; Ma L; Meng L; Wang X; Yu T; Zask A; Shen J; Yu K Oncotarget; 2016 Oct; 7(41):67071-67086. PubMed ID: 27563814 [TBL] [Abstract][Full Text] [Related]
11. Endothelial Cell mTOR Complex-2 Regulates Sprouting Angiogenesis. Farhan MA; Carmine-Simmen K; Lewis JD; Moore RB; Murray AG PLoS One; 2015; 10(8):e0135245. PubMed ID: 26295809 [TBL] [Abstract][Full Text] [Related]
12. MLN0128, an ATP-competitive mTOR kinase inhibitor with potent in vitro and in vivo antitumor activity, as potential therapy for bone and soft-tissue sarcoma. Slotkin EK; Patwardhan PP; Vasudeva SD; de Stanchina E; Tap WD; Schwartz GK Mol Cancer Ther; 2015 Feb; 14(2):395-406. PubMed ID: 25519700 [TBL] [Abstract][Full Text] [Related]
13. Current development of the second generation of mTOR inhibitors as anticancer agents. Zhou HY; Huang SL Chin J Cancer; 2012 Jan; 31(1):8-18. PubMed ID: 22059905 [TBL] [Abstract][Full Text] [Related]
14. CG0009, a novel glycogen synthase kinase 3 inhibitor, induces cell death through cyclin D1 depletion in breast cancer cells. Kim HM; Kim CS; Lee JH; Jang SJ; Hwang JJ; Ro S; Choi J PLoS One; 2013; 8(4):e60383. PubMed ID: 23565238 [TBL] [Abstract][Full Text] [Related]
15. The preclinical evaluation of the dual mTORC1/2 inhibitor INK-128 as a potential anti-colorectal cancer agent. Li C; Cui JF; Chen MB; Liu CY; Liu F; Zhang QD; Zou J; Lu PH Cancer Biol Ther; 2015; 16(1):34-42. PubMed ID: 25692620 [TBL] [Abstract][Full Text] [Related]
17. CC-223, a Potent and Selective Inhibitor of mTOR Kinase: In Vitro and In Vivo Characterization. Mortensen DS; Fultz KE; Xu S; Xu W; Packard G; Khambatta G; Gamez JC; Leisten J; Zhao J; Apuy J; Ghoreishi K; Hickman M; Narla RK; Bissonette R; Richardson S; Peng SX; Perrin-Ninkovic S; Tran T; Shi T; Yang WQ; Tong Z; Cathers BE; Moghaddam MF; Canan SS; Worland P; Sankar S; Raymon HK Mol Cancer Ther; 2015 Jun; 14(6):1295-305. PubMed ID: 25855786 [TBL] [Abstract][Full Text] [Related]
18. Investigational drug MLN0128, a novel TORC1/2 inhibitor, demonstrates potent oral antitumor activity in human breast cancer xenograft models. Gökmen-Polar Y; Liu Y; Toroni RA; Sanders KL; Mehta R; Badve S; Rommel C; Sledge GW Breast Cancer Res Treat; 2012 Dec; 136(3):673-82. PubMed ID: 23085766 [TBL] [Abstract][Full Text] [Related]
19. Differential effects of selective inhibitors targeting the PI3K/AKT/mTOR pathway in acute lymphoblastic leukemia. Badura S; Tesanovic T; Pfeifer H; Wystub S; Nijmeijer BA; Liebermann M; Falkenburg JH; Ruthardt M; Ottmann OG PLoS One; 2013; 8(11):e80070. PubMed ID: 24244612 [TBL] [Abstract][Full Text] [Related]