These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 24626262)

  • 1. Dysfunctional muscle and liver glycogen metabolism in mdx dystrophic mice.
    Stapleton DI; Lau X; Flores M; Trieu J; Gehrig SM; Chee A; Naim T; Lynch GS; Koopman R
    PLoS One; 2014; 9(3):e91514. PubMed ID: 24626262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elevated GLUT4 and glycogenin protein abundance correspond to increased glycogen content in the soleus muscle of mdx mice with no benefit associated with taurine supplementation.
    Barker RG; Frankish BP; Xu H; Murphy RM
    Physiol Rep; 2018 Mar; 6(5):. PubMed ID: 29484837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increasing muscle contractility through low-frequency stimulation alters tibial bone geometry and reduces bone strength in
    Chan AS; Hardee JP; Blank M; Cho EH; McGregor NE; Sims NA; Lynch GS
    J Appl Physiol (1985); 2023 Jul; 135(1):77-87. PubMed ID: 37262103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alterations in Notch signalling in skeletal muscles from mdx and dko dystrophic mice and patients with Duchenne muscular dystrophy.
    Church JE; Trieu J; Chee A; Naim T; Gehrig SM; Lamon S; Angelini C; Russell AP; Lynch GS
    Exp Physiol; 2014 Apr; 99(4):675-87. PubMed ID: 24443351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrative effects of dystrophin loss on metabolic function of the mdx mouse.
    Strakova J; Kamdar F; Kulhanek D; Razzoli M; Garry DJ; Ervasti JM; Bartolomucci A; Townsend D
    Sci Rep; 2018 Sep; 8(1):13624. PubMed ID: 30206270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low intensity training of mdx mice reduces carbonylation and increases expression levels of proteins involved in energy metabolism and muscle contraction.
    Hyzewicz J; Tanihata J; Kuraoka M; Ito N; Miyagoe-Suzuki Y; Takeda S
    Free Radic Biol Med; 2015 May; 82():122-36. PubMed ID: 25660994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Smooth muscle-specific dystrophin expression improves aberrant vasoregulation in mdx mice.
    Ito K; Kimura S; Ozasa S; Matsukura M; Ikezawa M; Yoshioka K; Ueno H; Suzuki M; Araki K; Yamamura K; Miwa T; Dickson G; Thomas GD; Miike T
    Hum Mol Genet; 2006 Jul; 15(14):2266-75. PubMed ID: 16777842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. miR-378 affects metabolic disturbances in the mdx model of Duchenne muscular dystrophy.
    Podkalicka P; Mucha O; Kaziród K; Szade K; Stępniewski J; Ivanishchuk L; Hirao H; Pośpiech E; Józkowicz A; Kupiec-Weglinski JW; Dulak J; Łoboda A
    Sci Rep; 2022 Mar; 12(1):3945. PubMed ID: 35273230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pre-clinical evaluation of N-acetylcysteine reveals side effects in the mdx mouse model of Duchenne muscular dystrophy.
    Pinniger GJ; Terrill JR; Assan EB; Grounds MD; Arthur PG
    J Physiol; 2017 Dec; 595(23):7093-7107. PubMed ID: 28887840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Desmin prevents muscle wasting, exaggerated weakness and fragility, and fatigue in dystrophic mdx mouse.
    Ferry A; Messéant J; Parlakian A; Lemaitre M; Roy P; Delacroix C; Lilienbaum A; Hovhannisyan Y; Furling D; Klein A; Li Z; Agbulut O
    J Physiol; 2020 Sep; 598(17):3667-3689. PubMed ID: 32515007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dystrophic mdx mice develop severe cardiac and respiratory dysfunction following genetic ablation of the anti-inflammatory cytokine IL-10.
    Nitahara-Kasahara Y; Hayashita-Kinoh H; Chiyo T; Nishiyama A; Okada H; Takeda S; Okada T
    Hum Mol Genet; 2014 Aug; 23(15):3990-4000. PubMed ID: 24659498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. miR-146a deficiency does not aggravate muscular dystrophy in mdx mice.
    Bronisz-Budzyńska I; Chwalenia K; Mucha O; Podkalicka P; Karolina-Bukowska-Strakova ; Józkowicz A; Łoboda A; Kozakowska M; Dulak J
    Skelet Muscle; 2019 Aug; 9(1):22. PubMed ID: 31412923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contractile efficiency of dystrophic mdx mouse muscle: in vivo and ex vivo assessment of adaptation to exercise of functional end points.
    Capogrosso RF; Mantuano P; Cozzoli A; Sanarica F; Massari AM; Conte E; Fonzino A; Giustino A; Rolland JF; Quaranta A; De Bellis M; Camerino GM; Grange RW; De Luca A
    J Appl Physiol (1985); 2017 Apr; 122(4):828-843. PubMed ID: 28057817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Taurine deficiency, synthesis and transport in the mdx mouse model for Duchenne Muscular Dystrophy.
    Terrill JR; Grounds MD; Arthur PG
    Int J Biochem Cell Biol; 2015 Sep; 66():141-8. PubMed ID: 26239309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Caspase-12 ablation preserves muscle function in the mdx mouse.
    Moorwood C; Barton ER
    Hum Mol Genet; 2014 Oct; 23(20):5325-41. PubMed ID: 24879640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Embryonic myosin is a regeneration marker to monitor utrophin-based therapies for DMD.
    Guiraud S; Edwards B; Squire SE; Moir L; Berg A; Babbs A; Ramadan N; Wood MJ; Davies KE
    Hum Mol Genet; 2019 Jan; 28(2):307-319. PubMed ID: 30304405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neopterin/7,8-dihydroneopterin is elevated in Duchenne muscular dystrophy patients and protects mdx skeletal muscle function.
    Lindsay A; Schmiechen A; Chamberlain CM; Ervasti JM; Lowe DA
    Exp Physiol; 2018 Jul; 103(7):995-1009. PubMed ID: 29791760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of disease specific pathways using in vivo SILAC proteomics in dystrophin deficient mdx mouse.
    Rayavarapu S; Coley W; Cakir E; Jahnke V; Takeda S; Aoki Y; Grodish-Dressman H; Jaiswal JK; Hoffman EP; Brown KJ; Hathout Y; Nagaraju K
    Mol Cell Proteomics; 2013 May; 12(5):1061-73. PubMed ID: 23297347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of gene expression differences between utrophin/dystrophin-deficient vs mdx skeletal muscles reveals a specific upregulation of slow muscle genes in limb muscles.
    Baker PE; Kearney JA; Gong B; Merriam AP; Kuhn DE; Porter JD; Rafael-Fortney JA
    Neurogenetics; 2006 May; 7(2):81-91. PubMed ID: 16525850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction of circulating sphingosine-1-phosphate worsens mdx soleus muscle dystrophic phenotype.
    Germinario E; Bondì M; Blaauw B; Betto R; Danieli-Betto D
    Exp Physiol; 2020 Nov; 105(11):1895-1906. PubMed ID: 32897592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.