These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 24626393)

  • 1. A bidirectional brain-machine interface algorithm that approximates arbitrary force-fields.
    Vato A; Szymanski FD; Semprini M; Mussa-Ivaldi FA; Panzeri S
    PLoS One; 2014; 9(3):e91677. PubMed ID: 24626393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shaping the dynamics of a bidirectional neural interface.
    Vato A; Semprini M; Maggiolini E; Szymanski FD; Fadiga L; Panzeri S; Mussa-Ivaldi FA
    PLoS Comput Biol; 2012; 8(7):e1002578. PubMed ID: 22829754
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A non-linear mapping algorithm shaping the control policy of a bidirectional brain machine interface.
    Boi F; Semprini M; Vato A
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3052-3055. PubMed ID: 28268955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new full closed-loop brain-machine interface approach based on neural activity: A study based on modeling and experimental studies.
    Amiri M; Nazari S; Jafari AH; Makkiabadi B
    Heliyon; 2023 Mar; 9(3):e13766. PubMed ID: 36851970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic Brain-Machine Interface: a novel paradigm for bidirectional interaction between brains and dynamical systems.
    Szymanski FD; Semprini M; Mussa-Ivaldi FA; Fadiga L; Panzeri S; Vato A
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4592-5. PubMed ID: 22255360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bidirectional brain-computer interfaces.
    Hughes C; Herrera A; Gaunt R; Collinger J
    Handb Clin Neurol; 2020; 168():163-181. PubMed ID: 32164851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stimulus-driven changes in sensorimotor behavior and neuronal functional connectivity application to brain-machine interfaces and neurorehabilitation.
    Rebesco JM; Miller LE
    Prog Brain Res; 2011; 192():83-102. PubMed ID: 21763520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiscale modeling and decoding algorithms for spike-field activity.
    Hsieh HL; Wong YT; Pesaran B; Shanechi MM
    J Neural Eng; 2019 Feb; 16(1):016018. PubMed ID: 30523833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequential Monte Carlo point-process estimation of kinematics from neural spiking activity for brain-machine interfaces.
    Wang Y; Paiva AR; Príncipe JC; Sanchez JC
    Neural Comput; 2009 Oct; 21(10):2894-930. PubMed ID: 19548797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decoding the non-stationary neuron spike trains by dual Monte Carlo point process estimation in motor Brain Machine Interfaces.
    Liao Y; Li H; Zhang Q; Fan G; Wang Y; Zheng X
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6513-6. PubMed ID: 25571488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local-learning-based neuron selection for grasping gesture prediction in motor brain machine interfaces.
    Xu K; Wang Y; Wang Y; Wang F; Hao Y; Zhang S; Zhang Q; Chen W; Zheng X
    J Neural Eng; 2013 Apr; 10(2):026008. PubMed ID: 23428877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decoding Movements from Cortical Ensemble Activity Using a Long Short-Term Memory Recurrent Network.
    Tseng PH; Urpi NA; Lebedev M; Nicolelis M
    Neural Comput; 2019 Jun; 31(6):1085-1113. PubMed ID: 30979355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. State-Dependent Decoding Algorithms Improve the Performance of a Bidirectional BMI in Anesthetized Rats.
    De Feo V; Boi F; Safaai H; Onken A; Panzeri S; Vato A
    Front Neurosci; 2017; 11():269. PubMed ID: 28620273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ascertaining neuron importance by information theoretical analysis in motor Brain-Machine Interfaces.
    Wang Y; Principe JC; Sanchez JC
    Neural Netw; 2009; 22(5-6):781-90. PubMed ID: 19615852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decoding hand gestures from primary somatosensory cortex using high-density ECoG.
    Branco MP; Freudenburg ZV; Aarnoutse EJ; Bleichner MG; Vansteensel MJ; Ramsey NF
    Neuroimage; 2017 Feb; 147():130-142. PubMed ID: 27926827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Instantaneous estimation of motor cortical neural encoding for online brain-machine interfaces.
    Wang Y; Principe JC
    J Neural Eng; 2010 Oct; 7(5):056010. PubMed ID: 20841635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monte Carlo point process estimation of electromyographic envelopes from motor cortical spikes for brain-machine interfaces.
    Liao Y; She X; Wang Y; Zhang S; Zhang Q; Zheng X; Principe JC
    J Neural Eng; 2015 Dec; 12(6):066014. PubMed ID: 26468607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Motor cortical decoding performance depends on controlled system order.
    Matlack C; Haddock A; Moritz CT; Chizeck HJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2553-6. PubMed ID: 25570511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recasting brain-machine interface design from a physical control system perspective.
    Zhang Y; Chase SM
    J Comput Neurosci; 2015 Oct; 39(2):107-18. PubMed ID: 26142906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reliability of motor and sensory neural decoding by threshold crossings for intracortical brain-machine interface.
    Dai J; Zhang P; Sun H; Qiao X; Zhao Y; Ma J; Li S; Zhou J; Wang C
    J Neural Eng; 2019 Jun; 16(3):036011. PubMed ID: 30822756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.