These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 24626393)

  • 21. Reliability of motor and sensory neural decoding by threshold crossings for intracortical brain-machine interface.
    Dai J; Zhang P; Sun H; Qiao X; Zhao Y; Ma J; Li S; Zhou J; Wang C
    J Neural Eng; 2019 Jun; 16(3):036011. PubMed ID: 30822756
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adaptive decoding for brain-machine interfaces through Bayesian parameter updates.
    Li Z; O'Doherty JE; Lebedev MA; Nicolelis MA
    Neural Comput; 2011 Dec; 23(12):3162-204. PubMed ID: 21919788
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A cryptography-based approach for movement decoding.
    Dyer EL; Gheshlaghi Azar M; Perich MG; Fernandes HL; Naufel S; Miller LE; Körding KP
    Nat Biomed Eng; 2017 Dec; 1(12):967-976. PubMed ID: 31015712
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Real-time particle filtering and smoothing algorithms for detecting abrupt changes in neural ensemble spike activity.
    Hu S; Zhang Q; Wang J; Chen Z
    J Neurophysiol; 2018 Apr; 119(4):1394-1410. PubMed ID: 29357468
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inference and Decoding of Motor Cortex Low-Dimensional Dynamics via Latent State-Space Models.
    Aghagolzadeh M; Truccolo W
    IEEE Trans Neural Syst Rehabil Eng; 2016 Feb; 24(2):272-82. PubMed ID: 26336135
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Decoding continuous limb movements from high-density epidural electrode arrays using custom spatial filters.
    Marathe AR; Taylor DM
    J Neural Eng; 2013 Jun; 10(3):036015. PubMed ID: 23611833
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A muscle-activity-dependent gain between motor cortex and EMG.
    Naufel S; Glaser JI; Kording KP; Perreault EJ; Miller LE
    J Neurophysiol; 2019 Jan; 121(1):61-73. PubMed ID: 30379603
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Leveraging neural dynamics to extend functional lifetime of brain-machine interfaces.
    Kao JC; Ryu SI; Shenoy KV
    Sci Rep; 2017 Aug; 7(1):7395. PubMed ID: 28784984
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of closed-loop neural interface technology in a rat model: combining motor cortex operant conditioning with visual cortex microstimulation.
    Marzullo TC; Lehmkuhle MJ; Gage GJ; Kipke DR
    IEEE Trans Neural Syst Rehabil Eng; 2010 Apr; 18(2):117-26. PubMed ID: 20144922
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Firing-rate-modulated spike detection and neural decoding co-design.
    Zhang Z; Constandinou TG
    J Neural Eng; 2023 May; 20(3):. PubMed ID: 37080210
    [No Abstract]   [Full Text] [Related]  

  • 31. Audio-induced medial prefrontal cortical dynamics enhances coadaptive learning in brain-machine interfaces.
    Tan J; Zhang X; Wu S; Song Z; Chen S; Huang Y; Wang Y
    J Neural Eng; 2023 Oct; 20(5):. PubMed ID: 37812934
    [No Abstract]   [Full Text] [Related]  

  • 32. Tracking Neural Modulation Depth by Dual Sequential Monte Carlo Estimation on Point Processes for Brain-Machine Interfaces.
    Wang Y; She X; Liao Y; Li H; Zhang Q; Zhang S; Zheng X; Principe J
    IEEE Trans Biomed Eng; 2016 Aug; 63(8):1728-41. PubMed ID: 26584486
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Toward more versatile and intuitive cortical brain-machine interfaces.
    Andersen RA; Kellis S; Klaes C; Aflalo T
    Curr Biol; 2014 Sep; 24(18):R885-R897. PubMed ID: 25247368
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cortical modulations increase in early sessions with brain-machine interface.
    Zacksenhouse M; Lebedev MA; Carmena JM; O'Doherty JE; Henriquez C; Nicolelis MA
    PLoS One; 2007 Jul; 2(7):e619. PubMed ID: 17637835
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Real-Time Point Process Filter for Multidimensional Decoding Problems Using Mixture Models.
    Rezaei MR; Arai K; Frank LM; Eden UT; Yousefi A
    J Neurosci Methods; 2021 Jan; 348():109006. PubMed ID: 33232686
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Design and validation of a real-time spiking-neural-network decoder for brain-machine interfaces.
    Dethier J; Nuyujukian P; Ryu SI; Shenoy KV; Boahen K
    J Neural Eng; 2013 Jun; 10(3):036008. PubMed ID: 23574919
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Superiority of nonlinear mapping in decoding multiple single-unit neuronal spike trains: a simulation study.
    Kim KH; Kim SS; Kim SJ
    J Neurosci Methods; 2006 Jan; 150(2):202-11. PubMed ID: 16099513
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Place Cell-Like Activity in the Primary Sensorimotor and Premotor Cortex During Monkey Whole-Body Navigation.
    Yin A; Tseng PH; Rajangam S; Lebedev MA; Nicolelis MAL
    Sci Rep; 2018 Jun; 8(1):9184. PubMed ID: 29907789
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Parameter estimation for maximizing controllability of linear brain-machine interfaces.
    Gowda S; Orsborn AL; Carmena JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1314-7. PubMed ID: 23366140
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Superior arm-movement decoding from cortex with a new, unsupervised-learning algorithm.
    Makin JG; O'Doherty JE; Cardoso MMB; Sabes PN
    J Neural Eng; 2018 Apr; 15(2):026010. PubMed ID: 29192609
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.