These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 24626786)

  • 1. Ion-dependent gate dielectric characteristics of ion-conducting SiO(2) solid-electrolytes in oxide field-effect transistors.
    Sun J; Qian C; Huang W; Yang J; Gao Y
    Phys Chem Chem Phys; 2014 Apr; 16(16):7455-60. PubMed ID: 24626786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mobility enhancement of SnO2 nanowire transistors gated with a nanogranular SiO2 solid electrolyte.
    Sun J; Huang W; Qian C; Yang J; Gao Y
    Phys Chem Chem Phys; 2014 Jan; 16(3):1084-8. PubMed ID: 24288005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-voltage self-assembled indium tin oxide thin-film transistors gated by microporous SiO
    Dou W; Tan Y
    RSC Adv; 2019 Sep; 9(53):30715-30719. PubMed ID: 35529372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Sputtered Silicon Oxide Electrolyte for High-Performance Thin-Film Transistors.
    Ma X; Zhang J; Cai W; Wang H; Wilson J; Wang Q; Xin Q; Song A
    Sci Rep; 2017 Apr; 7(1):809. PubMed ID: 28400576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solution-processable LaZrOx/SiO2 gate dielectric at low temperature of 180 °C for high-performance metal oxide field-effect transistors.
    Je SY; Son BG; Kim HG; Park MY; Do LM; Choi R; Jeong JK
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):18693-703. PubMed ID: 25285585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single ion conducting, polymerized ionic liquid triblock copolymer films: high capacitance electrolyte gates for n-type transistors.
    Choi JH; Xie W; Gu Y; Frisbie CD; Lodge TP
    ACS Appl Mater Interfaces; 2015 Apr; 7(13):7294-302. PubMed ID: 25821907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Field effect transistors with current saturation and voltage gain in ultrathin ReS2.
    Corbet CM; McClellan C; Rai A; Sonde SS; Tutuc E; Banerjee SK
    ACS Nano; 2015 Jan; 9(1):363-70. PubMed ID: 25514177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual-gate low-voltage transparent electric-double-layer thin-film transistors with a top gate for threshold voltage modulation.
    Dou W; Tan Y
    RSC Adv; 2020 Feb; 10(14):8093-8096. PubMed ID: 35497837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrolyte-gated, high mobility inorganic oxide transistors from printed metal halides.
    Garlapati SK; Mishra N; Dehm S; Hahn R; Kruk R; Hahn H; Dasgupta S
    ACS Appl Mater Interfaces; 2013 Nov; 5(22):11498-502. PubMed ID: 24224773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of Flexible In-Plane Gate Nanowire Transistor on a Paper Substrate.
    Liu H; Tan R
    J Nanosci Nanotechnol; 2021 Sep; 21(9):4857-4860. PubMed ID: 33691878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymer electrolyte-gated organic field-effect transistors: low-voltage, high-current switches for organic electronics and testbeds for probing electrical transport at high charge carrier density.
    Panzer MJ; Frisbie CD
    J Am Chem Soc; 2007 May; 129(20):6599-607. PubMed ID: 17472381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low voltage and high ON/OFF ratio field-effect transistors based on CVD MoS2 and ultra high-k gate dielectric PZT.
    Zhou C; Wang X; Raju S; Lin Z; Villaroman D; Huang B; Chan HL; Chan M; Chai Y
    Nanoscale; 2015 May; 7(19):8695-700. PubMed ID: 25907959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymer Electrolyte Blend Gate Dielectrics for High-Performance Ultrathin Organic Transistors: Toward Favorable Polymer Blend Miscibility and Reliability.
    Nketia-Yawson B; Tabi GD; Noh YY
    ACS Appl Mater Interfaces; 2019 May; 11(19):17610-17616. PubMed ID: 31018635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual-Gate Black Phosphorus Field-Effect Transistors with Hexagonal Boron Nitride as Dielectric and Passivation Layers.
    Ra HS; Lee AY; Kwak DH; Jeong MH; Lee JS
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):925-932. PubMed ID: 29256593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanosheet thickness-modulated MoS2 dielectric property evidenced by field-effect transistor performance.
    Min SW; Lee HS; Choi HJ; Park MK; Nam T; Kim H; Ryu S; Im S
    Nanoscale; 2013 Jan; 5(2):548-51. PubMed ID: 23233087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assembled dual in-plane gate thin-film transistors gated by nanogranular SiO2 proton conductors for logic applications.
    Zhu LQ; Sun J; Wu GD; Zhang HL; Wan Q
    Nanoscale; 2013 Mar; 5(5):1980-5. PubMed ID: 23364424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of Large Gate Voltages and Ultrathin Polymer Electrolytes on Carrier Density in Electric-Double-Layer-Gated Two-Dimensional Crystal Transistors.
    Awate SS; Mostek B; Kumari S; Dong C; Robinson JA; Xu K; Fullerton-Shirey SK
    ACS Appl Mater Interfaces; 2023 Mar; 15(12):15785-15796. PubMed ID: 36926818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved carrier mobility in few-layer MoS2 field-effect transistors with ionic-liquid gating.
    Perera MM; Lin MW; Chuang HJ; Chamlagain BP; Wang C; Tan X; Cheng MM; Tománek D; Zhou Z
    ACS Nano; 2013 May; 7(5):4449-58. PubMed ID: 23590723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature-Dependent Performance of Printed Field-Effect Transistors with Solid Polymer Electrolyte Gating.
    von Seggern F; Keskin I; Koos E; Kruk R; Hahn H; Dasgupta S
    ACS Appl Mater Interfaces; 2016 Nov; 8(46):31757-31763. PubMed ID: 27802016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization and simulation of electrolyte-gated organic field-effect transistors.
    Melzer K; Brändlein M; Popescu B; Popescu D; Lugli P; Scarpa G
    Faraday Discuss; 2014; 174():399-411. PubMed ID: 25325799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.