These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
307 related articles for article (PubMed ID: 24627160)
1. Oxygen sufficiency controls TOP mRNA translation via the TSC-Rheb-mTOR pathway in a 4E-BP-independent manner. Miloslavski R; Cohen E; Avraham A; Iluz Y; Hayouka Z; Kasir J; Mudhasani R; Jones SN; Cybulski N; Rüegg MA; Larsson O; Gandin V; Rajakumar A; Topisirovic I; Meyuhas O J Mol Cell Biol; 2014 Jun; 6(3):255-66. PubMed ID: 24627160 [TBL] [Abstract][Full Text] [Related]
2. The TSC-mTOR pathway mediates translational activation of TOP mRNAs by insulin largely in a raptor- or rictor-independent manner. Patursky-Polischuk I; Stolovich-Rain M; Hausner-Hanochi M; Kasir J; Cybulski N; Avruch J; Rüegg MA; Hall MN; Meyuhas O Mol Cell Biol; 2009 Feb; 29(3):640-9. PubMed ID: 19047368 [TBL] [Abstract][Full Text] [Related]
3. Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Tee AR; Manning BD; Roux PP; Cantley LC; Blenis J Curr Biol; 2003 Aug; 13(15):1259-68. PubMed ID: 12906785 [TBL] [Abstract][Full Text] [Related]
4. Reassessment of the role of TSC, mTORC1 and microRNAs in amino acids-meditated translational control of TOP mRNAs. Patursky-Polischuk I; Kasir J; Miloslavski R; Hayouka Z; Hausner-Hanochi M; Stolovich-Rain M; Tsukerman P; Biton M; Mudhasani R; Jones SN; Meyuhas O PLoS One; 2014; 9(10):e109410. PubMed ID: 25338081 [TBL] [Abstract][Full Text] [Related]
5. The tuberous sclerosis protein TSC2 is not required for the regulation of the mammalian target of rapamycin by amino acids and certain cellular stresses. Smith EM; Finn SG; Tee AR; Browne GJ; Proud CG J Biol Chem; 2005 May; 280(19):18717-27. PubMed ID: 15772076 [TBL] [Abstract][Full Text] [Related]
6. RhoA modulates signaling through the mechanistic target of rapamycin complex 1 (mTORC1) in mammalian cells. Gordon BS; Kazi AA; Coleman CS; Dennis MD; Chau V; Jefferson LS; Kimball SR Cell Signal; 2014 Mar; 26(3):461-7. PubMed ID: 24316235 [TBL] [Abstract][Full Text] [Related]
7. Receptor-recognized α₂-macroglobulin binds to cell surface-associated GRP78 and activates mTORC1 and mTORC2 signaling in prostate cancer cells. Misra UK; Pizzo SV PLoS One; 2012; 7(12):e51735. PubMed ID: 23272152 [TBL] [Abstract][Full Text] [Related]
8. Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. Garami A; Zwartkruis FJ; Nobukuni T; Joaquin M; Roccio M; Stocker H; Kozma SC; Hafen E; Bos JL; Thomas G Mol Cell; 2003 Jun; 11(6):1457-66. PubMed ID: 12820960 [TBL] [Abstract][Full Text] [Related]
9. Hypoxia-induced energy stress regulates mRNA translation and cell growth. Liu L; Cash TP; Jones RG; Keith B; Thompson CB; Simon MC Mol Cell; 2006 Feb; 21(4):521-31. PubMed ID: 16483933 [TBL] [Abstract][Full Text] [Related]
10. Tuberous sclerosis complex proteins 1 and 2 control serum-dependent translation in a TOP-dependent and -independent manner. Bilanges B; Argonza-Barrett R; Kolesnichenko M; Skinner C; Nair M; Chen M; Stokoe D Mol Cell Biol; 2007 Aug; 27(16):5746-64. PubMed ID: 17562867 [TBL] [Abstract][Full Text] [Related]
11. Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling. Tee AR; Fingar DC; Manning BD; Kwiatkowski DJ; Cantley LC; Blenis J Proc Natl Acad Sci U S A; 2002 Oct; 99(21):13571-6. PubMed ID: 12271141 [TBL] [Abstract][Full Text] [Related]
12. Virus-induced translational arrest through 4EBP1/2-dependent decay of 5'-TOP mRNAs restricts viral infection. Hopkins KC; Tartell MA; Herrmann C; Hackett BA; Taschuk F; Panda D; Menghani SV; Sabin LR; Cherry S Proc Natl Acad Sci U S A; 2015 Jun; 112(22):E2920-9. PubMed ID: 26038567 [TBL] [Abstract][Full Text] [Related]
13. c-myc Repression of TSC2 contributes to control of translation initiation and Myc-induced transformation. Ravitz MJ; Chen L; Lynch M; Schmidt EV Cancer Res; 2007 Dec; 67(23):11209-17. PubMed ID: 18056446 [TBL] [Abstract][Full Text] [Related]
14. Regulatory effects of mammalian target of rapamycin-activated pathways in type I and II interferon signaling. Kaur S; Lal L; Sassano A; Majchrzak-Kita B; Srikanth M; Baker DP; Petroulakis E; Hay N; Sonenberg N; Fish EN; Platanias LC J Biol Chem; 2007 Jan; 282(3):1757-68. PubMed ID: 17114181 [TBL] [Abstract][Full Text] [Related]
15. Dual inhibition of phosphatidylinositol 3-kinase/Akt and mammalian target of rapamycin signaling in human nonsmall cell lung cancer cells by a dietary flavonoid fisetin. Khan N; Afaq F; Khusro FH; Mustafa Adhami V; Suh Y; Mukhtar H Int J Cancer; 2012 Apr; 130(7):1695-705. PubMed ID: 21618507 [TBL] [Abstract][Full Text] [Related]
16. cAMP inhibits mammalian target of rapamycin complex-1 and -2 (mTORC1 and 2) by promoting complex dissociation and inhibiting mTOR kinase activity. Xie J; Ponuwei GA; Moore CE; Willars GB; Tee AR; Herbert TP Cell Signal; 2011 Dec; 23(12):1927-35. PubMed ID: 21763421 [TBL] [Abstract][Full Text] [Related]