BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 24627481)

  • 1. Glycosylphosphatidylinositol anchoring directs the assembly of Sup35NM protein into non-fibrillar, membrane-bound aggregates.
    Marshall KE; Offerdahl DK; Speare JO; Dorward DW; Hasenkrug A; Carmody AB; Baron GS
    J Biol Chem; 2014 May; 289(18):12245-63. PubMed ID: 24627481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GPI anchoring facilitates propagation and spread of misfolded Sup35 aggregates in mammalian cells.
    Speare JO; Offerdahl DK; Hasenkrug A; Carmody AB; Baron GS
    EMBO J; 2010 Feb; 29(4):782-94. PubMed ID: 20057357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo evidence for the fibrillar structures of Sup35 prions in yeast cells.
    Kawai-Noma S; Pack CG; Kojidani T; Asakawa H; Hiraoka Y; Kinjo M; Haraguchi T; Taguchi H; Hirata A
    J Cell Biol; 2010 Jul; 190(2):223-31. PubMed ID: 20643880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pathogenic polyglutamine tracts are potent inducers of spontaneous Sup35 and Rnq1 amyloidogenesis.
    Goehler H; Dröge A; Lurz R; Schnoegl S; Chernoff YO; Wanker EE
    PLoS One; 2010 Mar; 5(3):e9642. PubMed ID: 20224794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Yeast prion protein New1 can break Sup35 amyloid fibrils into fragments in an ATP-dependent manner.
    Inoue Y; Kawai-Noma S; Koike-Takeshita A; Taguchi H; Yoshida M
    Genes Cells; 2011 May; 16(5):545-56. PubMed ID: 21453424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Horizontal Transmission of Cytosolic Sup35 Prions by Extracellular Vesicles.
    Liu S; Hossinger A; Hofmann JP; Denner P; Vorberg IM
    mBio; 2016 Jul; 7(4):. PubMed ID: 27406566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analyzing the birth and propagation of two distinct prions, [PSI+] and [Het-s](y), in yeast.
    Mathur V; Taneja V; Sun Y; Liebman SW
    Mol Biol Cell; 2010 May; 21(9):1449-61. PubMed ID: 20219972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PrP Knockout Cells Expressing Transmembrane PrP Resist Prion Infection.
    Marshall KE; Hughson A; Vascellari S; Priola SA; Sakudo A; Onodera T; Baron GS
    J Virol; 2017 Jan; 91(2):. PubMed ID: 27847358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Yarrowia lipolytica orthologs of Sup35p assemble into thioflavin T-negative amyloid fibrils.
    Kabani M; Melki R
    Biochem Biophys Res Commun; 2020 Aug; 529(3):533-539. PubMed ID: 32736670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amyloid properties of the yeast cell wall protein Toh1 and its interaction with prion proteins Rnq1 and Sup35.
    Sergeeva AV; Sopova JV; Belashova TA; Siniukova VA; Chirinskaite AV; Galkin AP; Zadorsky SP
    Prion; 2019 Jan; 13(1):21-32. PubMed ID: 30558459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Yeast J-protein Sis1 prevents prion toxicity by moderating depletion of prion protein.
    Kumar J; Reidy M; Masison DC
    Genetics; 2021 Oct; 219(2):. PubMed ID: 34849884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The interaction of Hsp104 with yeast prion Sup35 as analyzed by fluorescence cross-correlation spectroscopy.
    Ohta S; Kawai-Noma S; Kitamura A; Pack CG; Kinjo M; Taguchi H
    Biochem Biophys Res Commun; 2013 Dec; 442(1-2):28-32. PubMed ID: 24216111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular basis for diversification of yeast prion strain conformation.
    Ohhashi Y; Yamaguchi Y; Kurahashi H; Kamatari YO; Sugiyama S; Uluca B; Piechatzek T; Komi Y; Shida T; Müller H; Hanashima S; Heise H; Kuwata K; Tanaka M
    Proc Natl Acad Sci U S A; 2018 Mar; 115(10):2389-2394. PubMed ID: 29467288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visualization of aggregation of the Rnq1 prion domain and cross-seeding interactions with Sup35NM.
    Vitrenko YA; Gracheva EO; Richmond JE; Liebman SW
    J Biol Chem; 2007 Jan; 282(3):1779-87. PubMed ID: 17121829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of human laminin receptor with Sup35, the [PSI⁺] prion-forming protein from S. cerevisiae: a yeast model for studies of LamR interactions with amyloidogenic proteins.
    Pampeno C; Derkatch IL; Meruelo D
    PLoS One; 2014; 9(1):e86013. PubMed ID: 24416454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Modification of [PSI+] prion properties by the combination of amino acid changes within Sup35 protein N-domain].
    Bondarev SA; Shirokolobova ED; Trubitsyna NP; Zhuravleva GA
    Mol Biol (Mosk); 2014; 48(2):314-21. PubMed ID: 25850301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mammalian amyloidogenic proteins promote prion nucleation in yeast.
    Chandramowlishwaran P; Sun M; Casey KL; Romanyuk AV; Grizel AV; Sopova JV; Rubel AA; Nussbaum-Krammer C; Vorberg IM; Chernoff YO
    J Biol Chem; 2018 Mar; 293(9):3436-3450. PubMed ID: 29330303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased [PSI+] appearance by fusion of Rnq1 with the prion domain of Sup35 in Saccharomyces cerevisiae.
    Choe YJ; Ryu Y; Kim HJ; Seok YJ
    Eukaryot Cell; 2009 Jul; 8(7):968-76. PubMed ID: 19411620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Liberation of GPI-anchored prion from phospholipids accelerates amyloidogenic conversion.
    Lin SJ; Yu KH; Wu JR; Lee CF; Jheng CP; Chen HR; Lee CI
    Int J Mol Sci; 2013 Sep; 14(9):17943-57. PubMed ID: 24005859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The cellular prion protein with a monoacylated glycosylphosphatidylinositol anchor modifies cell membranes, inhibits cell signaling and reduces prion formation.
    Bate C; Williams A
    Prion; 2011; 5(2):65-8. PubMed ID: 21738009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.