These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 24627481)

  • 21. Oxidative stress conditions increase the frequency of de novo formation of the yeast [PSI+] prion.
    Doronina VA; Staniforth GL; Speldewinde SH; Tuite MF; Grant CM
    Mol Microbiol; 2015 Apr; 96(1):163-74. PubMed ID: 25601439
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional role of Tia1/Pub1 and Sup35 prion domains: directing protein synthesis machinery to the tubulin cytoskeleton.
    Li X; Rayman JB; Kandel ER; Derkatch IL
    Mol Cell; 2014 Jul; 55(2):305-18. PubMed ID: 24981173
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultrastructure and pathology of prion protein amyloid accumulation and cellular damage in extraneural tissues of scrapie-infected transgenic mice expressing anchorless prion protein.
    Race B; Jeffrey M; McGovern G; Dorward D; Chesebro B
    Prion; 2017 Jul; 11(4):234-248. PubMed ID: 28759310
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of Q/N-rich, polyQ, and non-polyQ amyloids on the de novo formation of the [PSI+] prion in yeast and aggregation of Sup35 in vitro.
    Derkatch IL; Uptain SM; Outeiro TF; Krishnan R; Lindquist SL; Liebman SW
    Proc Natl Acad Sci U S A; 2004 Aug; 101(35):12934-9. PubMed ID: 15326312
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Aggregation and Prion-Inducing Properties of the G-Protein Gamma Subunit Ste18 are Regulated by Membrane Association.
    Chernova TA; Yang Z; Karpova TS; Shanks JR; Shcherbik N; Wilkinson KD; Chernoff YO
    Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32708832
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prefibrillar aggregates of yeast prion Sup35NM and its variant are toxic to mammalian cells.
    Liu Y; Wei H; Qu J; Wang J; Hung T
    Neurol Sci; 2011 Dec; 32(6):1147-52. PubMed ID: 21983867
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Conversion of a yeast prion protein to an infectious form in bacteria.
    Garrity SJ; Sivanathan V; Dong J; Lindquist S; Hochschild A
    Proc Natl Acad Sci U S A; 2010 Jun; 107(23):10596-601. PubMed ID: 20484678
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Amyloid formation characteristics of GNNQQNY from yeast prion protein Sup35 and its seeding with heterogeneous polypeptides.
    Haratake M; Takiguchi T; Masuda N; Yoshida S; Fuchigami T; Nakayama M
    Colloids Surf B Biointerfaces; 2017 Jan; 149():72-79. PubMed ID: 27736724
    [TBL] [Abstract][Full Text] [Related]  

  • 29. DNA aptamers detecting generic amyloid epitopes.
    Mitkevich OV; Kochneva-Pervukhova NV; Surina ER; Benevolensky SV; Kushnirov VV; Ter-Avanesyan MD
    Prion; 2012; 6(4):400-6. PubMed ID: 22874671
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of charged residues in the N-domain of Sup35 protein on prion [PSI+] stability and propagation.
    Bondarev SA; Shchepachev VV; Kajava AV; Zhouravleva GA
    J Biol Chem; 2013 Oct; 288(40):28503-13. PubMed ID: 23965990
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Temperature dependence of the aggregation kinetics of Sup35 and Ure2p yeast prions.
    Sabaté R; Villar-Piqué A; Espargaró A; Ventura S
    Biomacromolecules; 2012 Feb; 13(2):474-83. PubMed ID: 22176525
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Growth phase-dependent changes in the size and infectivity of SDS-resistant Sup35p assemblies associated with the [PSI
    Wang K; Melki R; Kabani M
    Mol Microbiol; 2019 Sep; 112(3):932-943. PubMed ID: 31206803
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The small heat shock protein Hsp31 cooperates with Hsp104 to modulate Sup35 prion aggregation.
    Aslam K; Tsai CJ; Hazbun TR
    Prion; 2016 Nov; 10(6):444-465. PubMed ID: 27690738
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sialic Acid on the Glycosylphosphatidylinositol Anchor Regulates PrP-mediated Cell Signaling and Prion Formation.
    Bate C; Nolan W; Williams A
    J Biol Chem; 2016 Jan; 291(1):160-70. PubMed ID: 26553874
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular basis for transmission barrier and interference between closely related prion proteins in yeast.
    Afanasieva EG; Kushnirov VV; Tuite MF; Ter-Avanesyan MD
    J Biol Chem; 2011 May; 286(18):15773-80. PubMed ID: 21454674
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of yeast prion aggregates with amyloid-staining compound in vivo.
    Kimura Y; Koitabashi S; Fujita T
    Cell Struct Funct; 2003 Jun; 28(3):187-93. PubMed ID: 12951439
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Yeast Sup35 Prion Structure: Two Types, Four Parts, Many Variants.
    Dergalev AA; Alexandrov AI; Ivannikov RI; Ter-Avanesyan MD; Kushnirov VV
    Int J Mol Sci; 2019 May; 20(11):. PubMed ID: 31146333
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Yeast prions form infectious amyloid inclusion bodies in bacteria.
    Espargaró A; Villar-Piqué A; Sabaté R; Ventura S
    Microb Cell Fact; 2012 Jun; 11():89. PubMed ID: 22731490
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A fluorescent mutant of the NM domain of the yeast prion Sup35 provides insight into fibril formation and stability.
    Palhano FL; Rocha CB; Bernardino A; Weissmuller G; Masuda CA; Montero-Lomelí M; Gomes AM; Chien P; Fernandes PM; Foguel D
    Biochemistry; 2009 Jul; 48(29):6811-23. PubMed ID: 19530740
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stress-dependent proteolytic processing of the actin assembly protein Lsb1 modulates a yeast prion.
    Ali M; Chernova TA; Newnam GP; Yin L; Shanks J; Karpova TS; Lee A; Laur O; Subramanian S; Kim D; McNally JG; Seyfried NT; Chernoff YO; Wilkinson KD
    J Biol Chem; 2014 Oct; 289(40):27625-39. PubMed ID: 25143386
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.