BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 24627630)

  • 1. Novel targeting using nanoparticles: an approach to the development of an effective anti-leishmanial drug-delivery system.
    Ribeiro TG; Chávez-Fumagalli MA; Valadares DG; França JR; Rodrigues LB; Duarte MC; Lage PS; Andrade PH; Lage DP; Arruda LV; Abánades DR; Costa LE; Martins VT; Tavares CA; Castilho RO; Coelho EA; Faraco AA
    Int J Nanomedicine; 2014; 9():877-90. PubMed ID: 24627630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An optimized nanoparticle delivery system based on chitosan and chondroitin sulfate molecules reduces the toxicity of amphotericin B and is effective in treating tegumentary leishmaniasis.
    Ribeiro TG; Franca JR; Fuscaldi LL; Santos ML; Duarte MC; Lage PS; Martins VT; Costa LE; Fernandes SO; Cardoso VN; Castilho RO; Soto M; Tavares CA; Faraco AA; Coelho EA; Chávez-Fumagalli MA
    Int J Nanomedicine; 2014; 9():5341-53. PubMed ID: 25429219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro and in vivo antileishmanial activity of a fluoroquinoline derivate against Leishmania infantum and Leishmania amazonensis species.
    Tavares GSV; Mendonça DVC; Lage DP; Antinarelli LMR; Soyer TG; Senna AJS; Matos GF; Dias DS; Ribeiro PAF; Batista JPT; Poletto JM; Brandão GC; Chávez-Fumagalli MA; Pereira GR; Coimbra ES; Coelho EAF
    Acta Trop; 2019 Mar; 191():29-37. PubMed ID: 30586571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poloxamer 407 (Pluronic(®) F127)-based polymeric micelles for amphotericin B: In vitro biological activity, toxicity and in vivo therapeutic efficacy against murine tegumentary leishmaniasis.
    Mendonça DV; Lage LM; Lage DP; Chávez-Fumagalli MA; Ludolf F; Roatt BM; Menezes-Souza D; Faraco AA; Castilho RO; Tavares CA; Barichello JM; Duarte MC; Coelho EA
    Exp Parasitol; 2016 Oct; 169():34-42. PubMed ID: 27427166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Th-1 biased immunomodulation and synergistic antileishmanial activity of stable cationic lipid-polymer hybrid nanoparticle: biodistribution and toxicity assessment of encapsulated amphotericin B.
    Asthana S; Jaiswal AK; Gupta PK; Dube A; Chourasia MK
    Eur J Pharm Biopharm; 2015 Jan; 89():62-73. PubMed ID: 25477079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formulation and characterization of amphotericin B-chitosan-dextran sulfate nanoparticles.
    Tiyaboonchai W; Limpeanchob N
    Int J Pharm; 2007 Feb; 329(1-2):142-9. PubMed ID: 17000065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of charge on FITC-BSA-loaded chondroitin sulfate-chitosan nanoparticles upon cell uptake in human Caco-2 cell monolayers.
    Hu CS; Chiang CH; Hong PD; Yeh MK
    Int J Nanomedicine; 2012; 7():4861-72. PubMed ID: 23028215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hemoglobin guided nanocarrier for specific delivery of amphotericin B to Leishmania infected macrophage.
    Bose PP; Kumar P; Dwivedi MK
    Acta Trop; 2016 Jun; 158():148-159. PubMed ID: 26945483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amphotericin B loaded sulfonated chitosan nanoparticles for targeting macrophages to treat intracellular Candida glabrata infections.
    Sandhya M; V A; Maneesha K S; Raja B; R J; S S
    Int J Biol Macromol; 2018 Apr; 110():133-139. PubMed ID: 29339278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of 4-sulfated N-acetyl galactosamine anchored chitosan nanoparticles: A dual strategy for effective management of Leishmaniasis.
    Tripathi P; Dwivedi P; Khatik R; Jaiswal AK; Dube A; Shukla P; Mishra PR
    Colloids Surf B Biointerfaces; 2015 Dec; 136():150-9. PubMed ID: 26381698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of the in vitro and in vivo antileishmanial activity of a chloroquinolin derivative against Leishmania species capable of causing tegumentary and visceral leishmaniasis.
    Soyer TG; Mendonça DVC; Tavares GSV; Lage DP; Dias DS; Ribeiro PAF; Perin L; Ludolf F; Coelho VTS; Ferreira ACG; Neves PHAS; Matos GF; Chávez-Fumagalli MA; Coimbra ES; Pereira GR; Coelho EAF; Antinarelli LMR
    Exp Parasitol; 2019 Apr; 199():30-37. PubMed ID: 30817917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bovine serum albumin nanoparticles containing amphotericin B were effective in treating murine cutaneous leishmaniasis and reduced the drug toxicity.
    Casa DM; Scariot DB; Khalil NM; Nakamura CV; Mainardes RM
    Exp Parasitol; 2018 Sep; 192():12-18. PubMed ID: 30026113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of nanoemulsions prepared with essential oils of copaiba- and andiroba against Leishmania infantum and Leishmania amazonensis infections.
    Dhorm Pimentel de Moraes AR; Tavares GD; Soares Rocha FJ; de Paula E; Giorgio S
    Exp Parasitol; 2018 Apr; 187():12-21. PubMed ID: 29518448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antileishmanial Activity, Cytotoxicity and Mechanism of Action of Clioquinol Against Leishmania infantum and Leishmania amazonensis Species.
    Tavares GSV; Mendonça DVC; Lage DP; Granato JDT; Ottoni FM; Ludolf F; Chávez-Fumagalli MA; Duarte MC; Tavares CAP; Alves RJ; Coimbra ES; Coelho EAF
    Basic Clin Pharmacol Toxicol; 2018 Sep; 123(3):236-246. PubMed ID: 29481714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parasitological and immunological evaluation of a novel chemotherapeutic agent against visceral leishmaniasis.
    Pereira IAG; Mendonça DVC; Tavares GSV; Lage DP; Ramos FF; Oliveira-da-Silva JA; Antinarelli LMR; Machado AS; Carvalho LM; Carvalho AMRS; Salustiano IV; Reis TAR; Bandeira RS; Silva AM; Martins VT; Chávez-Fumagalli MA; Humbert MV; Roatt BM; Duarte MC; Menezes-Souza D; Coimbra ES; Leite JPV; Coelho EAF; Gonçalves DU
    Parasite Immunol; 2020 Dec; 42(12):e12784. PubMed ID: 32772379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self assembled ionically sodium alginate cross-linked amphotericin B encapsulated glycol chitosan stearate nanoparticles: applicability in better chemotherapy and non-toxic delivery in visceral leishmaniasis.
    Gupta PK; Jaiswal AK; Asthana S; Verma A; Kumar V; Shukla P; Dwivedi P; Dube A; Mishra PR
    Pharm Res; 2015 May; 32(5):1727-40. PubMed ID: 25425053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mycobacterium indicus pranii (Mw) re-establishes host protective immune response in Leishmania donovani infected macrophages: critical role of IL-12.
    Adhikari A; Gupta G; Majumder S; Banerjee S; Bhattacharjee S; Bhattacharya P; Kumari S; Haldar S; Majumdar SB; Saha B; Majumdar S
    PLoS One; 2012; 7(7):e40265. PubMed ID: 22792256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activity of Amphotericin B-Loaded Chitosan Nanoparticles against Experimental Cutaneous Leishmaniasis.
    Riezk A; Van Bocxlaer K; Yardley V; Murdan S; Croft SL
    Molecules; 2020 Sep; 25(17):. PubMed ID: 32887341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunotherapy Combining Mimotopes Selected by Phage Display Plus Amphotericin B Is Effective for Treatment Against Visceral Leishmaniasis.
    Soyer TG; Bandeira Câmara RS; Pereira IAG; Ramos FF; de Jesus MM; Ludolf F; de Paula Costa G; Lage DP; de Freitas CS; Vale DL; Pimenta BL; Martins VT; Galdino AS; Chávez-Fumagalli MA; Roatt BM; de Sousa Vieira Tavares G; Coelho EAF
    Parasite Immunol; 2024 May; 46(5):e13037. PubMed ID: 38720446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physicochemical characterization by AFM, FT-IR and DSC and biological assays of a promising antileishmania delivery system loaded with a natural Brazilian product.
    Marquele-Oliveira F; Torres EC; Barud Hda S; Zoccal KF; Faccioli LH; Hori JI; Berretta AA
    J Pharm Biomed Anal; 2016 May; 123():195-204. PubMed ID: 26897464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.