BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 24628245)

  • 1. Polydopamine-based simple and versatile surface modification of polymeric nano drug carriers.
    Park J; Brust TF; Lee HJ; Lee SC; Watts VJ; Yeo Y
    ACS Nano; 2014 Apr; 8(4):3347-56. PubMed ID: 24628245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface modification of doxorubicin-loaded nanoparticles based on polydopamine with pH-sensitive property for tumor targeting therapy.
    Bi D; Zhao L; Yu R; Li H; Guo Y; Wang X; Han M
    Drug Deliv; 2018 Nov; 25(1):564-575. PubMed ID: 29457518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polydopamine-based surface modification for the development of peritumorally activatable nanoparticles.
    Gullotti E; Park J; Yeo Y
    Pharm Res; 2013 Aug; 30(8):1956-67. PubMed ID: 23609560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pathogen-Mimicking Polymeric Nanoparticles based on Dopamine Polymerization as Vaccines Adjuvants Induce Robust Humoral and Cellular Immune Responses.
    Liu Q; Jia J; Yang T; Fan Q; Wang L; Ma G
    Small; 2016 Apr; 12(13):1744-57. PubMed ID: 26849717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of ligands with different water solubilities on self-assembly and properties of targeted nanoparticles.
    Valencia PM; Hanewich-Hollatz MH; Gao W; Karim F; Langer R; Karnik R; Farokhzad OC
    Biomaterials; 2011 Sep; 32(26):6226-33. PubMed ID: 21658757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-step process to produce surface-functionalized polymeric nanoparticles.
    Sussman EM; Clarke MB; Shastri VP
    Langmuir; 2007 Nov; 23(24):12275-9. PubMed ID: 17963413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polymer-iron oxide composite nanoparticles for EPR-independent drug delivery.
    Park J; Kadasala NR; Abouelmagd SA; Castanares MA; Collins DS; Wei A; Yeo Y
    Biomaterials; 2016 Sep; 101():285-95. PubMed ID: 27310916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis, characterization, and evaluation of paclitaxel loaded in six-arm star-shaped poly(lactic-co-glycolic acid).
    Chen Y; Yang Z; Liu C; Wang C; Zhao S; Yang J; Sun H; Zhang Z; Kong D; Song C
    Int J Nanomedicine; 2013; 8():4315-26. PubMed ID: 24235829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved mucoadhesion and cell uptake of chitosan and chitosan oligosaccharide surface-modified polymer nanoparticles for mucosal delivery of proteins.
    Dyawanapelly S; Koli U; Dharamdasani V; Jain R; Dandekar P
    Drug Deliv Transl Res; 2016 Aug; 6(4):365-79. PubMed ID: 27106502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoparticles Based on Novel Carbohydrate-Functionalized Polymers.
    Raposo CD; Conceição CA; Barros MT
    Molecules; 2020 Apr; 25(7):. PubMed ID: 32290160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and characterization of surface-modified PLGA-polymeric nanoparticles used to target treatment of intestinal cancer.
    Ahmad N; Alam MA; Ahmad R; Naqvi AA; Ahmad FJ
    Artif Cells Nanomed Biotechnol; 2018 Mar; 46(2):432-446. PubMed ID: 28503995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupling of biotin-(poly(ethylene glycol))amine to poly(D,L-lactide-co-glycolide) nanoparticles for versatile surface modification.
    Weiss B; Schneider M; Muys L; Taetz S; Neumann D; Schaefer UF; Lehr CM
    Bioconjug Chem; 2007; 18(4):1087-94. PubMed ID: 17590034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of functionalization of PLGA-[Asp-PEG]n copolymer surfaces with Arg-Gly-Asp peptides, hydroxyapatite nanoparticles, and BMP-2-derived peptides on cell behavior in vitro.
    Pan H; Zheng Q; Yang S; Guo X
    J Biomed Mater Res A; 2014 Dec; 102(12):4526-35. PubMed ID: 24677783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and characterization of zwitterionic phospholipid polymer-coated poly(lactic acid) nanoparticles.
    Bao LL; Huang HQ; Zhao J; Nakashima K; Gong YK
    J Biomater Sci Polym Ed; 2014; 25(14-15):1703-16. PubMed ID: 25183528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anthracycline Drugs on Modified Surface of Quercetin-Loaded Polymer Nanoparticles: A Dual Drug Delivery Model for Cancer Treatment.
    Saha C; Kaushik A; Das A; Pal S; Majumder D
    PLoS One; 2016; 11(5):e0155710. PubMed ID: 27196562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Docetaxel-loaded polylactic acid-co-glycolic acid nanoparticles: formulation, physicochemical characterization and cytotoxicity studies.
    Pradhan R; Poudel BK; Ramasamy T; Choi HG; Yong CS; Kim JO
    J Nanosci Nanotechnol; 2013 Aug; 13(8):5948-56. PubMed ID: 23882865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The targeting properties of folate-conjugated Pluronic F127/poly (lactic-co-glycolic) nanoparticles.
    Luo YY; Xiong XY; Cheng F; Gong YC; Li ZL; Li YP
    Int J Biol Macromol; 2017 Dec; 105(Pt 1):711-719. PubMed ID: 28716749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interfacial activity assisted surface functionalization: a novel approach to incorporate maleimide functional groups and cRGD peptide on polymeric nanoparticles for targeted drug delivery.
    Toti US; Guru BR; Grill AE; Panyam J
    Mol Pharm; 2010 Aug; 7(4):1108-17. PubMed ID: 20527782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving cellular uptake and cytotoxicity of chitosan-coated poly(lactic-
    Van Hees S; Elbrink K; De Schryver M; Delputte PL; Kiekens F
    Nanomedicine (Lond); 2020 Nov; 15(27):2671-2688. PubMed ID: 33112210
    [No Abstract]   [Full Text] [Related]  

  • 20. Design of a multifunctional PLGA nanoparticulate drug delivery system: evaluation of its physicochemical properties and anticancer activity to malignant cancer cells.
    Wang Z; Chui WK; Ho PC
    Pharm Res; 2009 May; 26(5):1162-71. PubMed ID: 19191012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.