These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 24628406)

  • 1. Thin, tough, pH-sensitive hydrogel films with rapid load recovery.
    Naficy S; Spinks GM; Wallace GG
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):4109-14. PubMed ID: 24628406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid Recovery Double Cross-Linking Hydrogel with Stable Mechanical Properties and High Resilience Triggered by Visible Light.
    Zhu L; Qiu J; Sakai E; Ito K
    ACS Appl Mater Interfaces; 2017 Apr; 9(15):13593-13601. PubMed ID: 28322540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrastiff, Tough, and Healable Ionic-Hydrogen Bond Cross-Linked Hydrogels and Their Uses as Building Blocks To Construct Complex Hydrogel Structures.
    Liang Y; Xue J; Du B; Nie J
    ACS Appl Mater Interfaces; 2019 Feb; 11(5):5441-5454. PubMed ID: 30624049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical Properties of Double Network Poly (Acrylic Acid) Based Hydrogels for Potential Use as a Biomaterial
    Udayanandana R; Silva P; Mudiyanselage TK
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1101-1104. PubMed ID: 31946086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tough, resilient and pH-sensitive interpenetrating polyacrylamide/alginate/montmorillonite nanocomposite hydrogels.
    Su X; Chen B
    Carbohydr Polym; 2018 Oct; 197():497-507. PubMed ID: 30007640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions affecting the mechanical properties of macromolecular microsphere composite hydrogels.
    Jiang F; Huang T; He C; Brown HR; Wang H
    J Phys Chem B; 2013 Oct; 117(43):13679-87. PubMed ID: 24093971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physicochemical characterisation and biological evaluation of hydrogel-poly(epsilon-caprolactone) interpenetrating polymer networks as novel urinary biomaterials.
    Jones DS; McLaughlin DW; McCoy CP; Gorman SP
    Biomaterials; 2005 May; 26(14):1761-70. PubMed ID: 15576150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Responsive hydrogels with poly(N-isopropylacrylamide-co-acrylic acid) colloidal spheres as building blocks.
    Xia LW; Ju XJ; Liu JJ; Xie R; Chu LY
    J Colloid Interface Sci; 2010 Sep; 349(1):106-13. PubMed ID: 20609844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removable interpenetrating network enables highly-responsive 2-D photonic crystal hydrogel sensors.
    Coukouma AE; Smith NL; Asher SA
    Analyst; 2015 Oct; 140(19):6517-21. PubMed ID: 26325265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid pectin-Fe
    Niu R; Qin Z; Ji F; Xu M; Tian X; Li J; Yao F
    Soft Matter; 2017 Dec; 13(48):9237-9245. PubMed ID: 29199306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unconventional Tough Double-Network Hydrogels with Rapid Mechanical Recovery, Self-Healing, and Self-Gluing Properties.
    Jia H; Huang Z; Fei Z; Dyson PJ; Zheng Z; Wang X
    ACS Appl Mater Interfaces; 2016 Nov; 8(45):31339-31347. PubMed ID: 27782401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous interpenetrating silicone hydrogel based on radical/addition polymerization for extended release of ocular therapeutics.
    Xu J; Zhang L; Zhang Y; Li T; Huo G
    J Biomater Sci Polym Ed; 2014; 25(2):121-35. PubMed ID: 24083662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simple route to interpenetrating network hydrogel with high mechanical strength.
    Tang Q; Sun X; Li Q; Wu J; Lin J
    J Colloid Interface Sci; 2009 Nov; 339(1):45-52. PubMed ID: 19665139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Elastic and Ultratough Hybrid Ionic-Covalent Hydrogels with Tunable Structures and Mechanics.
    Yang Y; Wang X; Yang F; Wang L; Wu D
    Adv Mater; 2018 May; 30(18):e1707071. PubMed ID: 29577453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Smart composite hydrogel with pH-, ionic strength- and temperature-induced actuation.
    Shang J; Theato P
    Soft Matter; 2018 Nov; 14(41):8401-8407. PubMed ID: 30311935
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NIR-Triggered Rapid Shape Memory PAM-GO-Gelatin Hydrogels with High Mechanical Strength.
    Huang J; Zhao L; Wang T; Sun W; Tong Z
    ACS Appl Mater Interfaces; 2016 May; 8(19):12384-92. PubMed ID: 27116394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Double network hydrogels from polyzwitterions: high mechanical strength and excellent anti-biofouling properties.
    Yin H; Akasaki T; Lin Sun T; Nakajima T; Kurokawa T; Nonoyama T; Taira T; Saruwatari Y; Ping Gong J
    J Mater Chem B; 2013 Aug; 1(30):3685-3693. PubMed ID: 32261266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and characterization of hybrid double network chitosan/poly(acrylic amide-acrylic acid) high toughness hydrogel through Al
    Jiang X; Xiang N; Wang J; Zhao Y; Hou L
    Carbohydr Polym; 2017 Oct; 173():701-706. PubMed ID: 28732916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tough and Processable Hydrogels Based on Lignin and Hydrophilic Polyurethane.
    Oveissi F; Naficy S; Le TYL; Fletcher DF; Dehghani F
    ACS Appl Bio Mater; 2018 Dec; 1(6):2073-2081. PubMed ID: 34996269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simple approach to reinforce hydrogels with cellulose nanocrystals.
    Yang J; Han CR; Xu F; Sun RC
    Nanoscale; 2014 Jun; 6(11):5934-43. PubMed ID: 24763379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.