BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 24628983)

  • 1. Comparative analysis of CRISPR cassettes from the human gut metagenomic contigs.
    Gogleva AA; Gelfand MS; Artamonova II
    BMC Genomics; 2014 Mar; 15(1):202. PubMed ID: 24628983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational prediction of CRISPR cassettes in gut metagenome samples from Chinese type-2 diabetic patients and healthy controls.
    Mangericao TC; Peng Z; Zhang X
    BMC Syst Biol; 2016 Jan; 10 Suppl 1(Suppl 1):5. PubMed ID: 26818725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extraction of CRISPR-targeted sequences from the metagenome.
    Sugimoto R; Nishimura L; Nguyen PT; Inoue I
    STAR Protoc; 2022 Sep; 3(3):101525. PubMed ID: 35780428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diversity in a Polymicrobial Community Revealed by Analysis of Viromes, Endolysins and CRISPR Spacers.
    Davison M; Treangen TJ; Koren S; Pop M; Bhaya D
    PLoS One; 2016; 11(9):e0160574. PubMed ID: 27611571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comprehensive discovery of CRISPR-targeted terminally redundant sequences in the human gut metagenome: Viruses, plasmids, and more.
    Sugimoto R; Nishimura L; Nguyen PT; Ito J; Parrish NF; Mori H; Kurokawa K; Nakaoka H; Inoue I
    PLoS Comput Biol; 2021 Oct; 17(10):e1009428. PubMed ID: 34673779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The CRISPR Spacer Space Is Dominated by Sequences from Species-Specific Mobilomes.
    Shmakov SA; Sitnik V; Makarova KS; Wolf YI; Severinov KV; Koonin EV
    mBio; 2017 Sep; 8(5):. PubMed ID: 28928211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Holding a grudge: persisting anti-phage CRISPR immunity in multiple human gut microbiomes.
    Mick E; Stern A; Sorek R
    RNA Biol; 2013 May; 10(5):900-6. PubMed ID: 23439321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metagenomic reconstructions of bacterial CRISPR loci constrain population histories.
    Sun CL; Thomas BC; Barrangou R; Banfield JF
    ISME J; 2016 Apr; 10(4):858-70. PubMed ID: 26394009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-read based de novo assembly of low-complexity metagenome samples results in finished genomes and reveals insights into strain diversity and an active phage system.
    Somerville V; Lutz S; Schmid M; Frei D; Moser A; Irmler S; Frey JE; Ahrens CH
    BMC Microbiol; 2019 Jun; 19(1):143. PubMed ID: 31238873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diverse CRISPRs evolving in human microbiomes.
    Rho M; Wu YW; Tang H; Doak TG; Ye Y
    PLoS Genet; 2012; 8(6):e1002441. PubMed ID: 22719260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Abundant and diverse clustered regularly interspaced short palindromic repeat spacers in Clostridium difficile strains and prophages target multiple phage types within this pathogen.
    Hargreaves KR; Flores CO; Lawley TD; Clokie MR
    mBio; 2014 Aug; 5(5):e01045-13. PubMed ID: 25161187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR Spacers Indicate Preferential Matching of Specific Virioplankton Genes.
    Nasko DJ; Ferrell BD; Moore RM; Bhavsar JD; Polson SW; Wommack KE
    mBio; 2019 Mar; 10(2):. PubMed ID: 30837341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mining, analyzing, and integrating viral signals from metagenomic data.
    Zheng T; Li J; Ni Y; Kang K; Misiakou MA; Imamovic L; Chow BKC; Rode AA; Bytzer P; Sommer M; Panagiotou G
    Microbiome; 2019 Mar; 7(1):42. PubMed ID: 30890181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial Diversity and Phage-Host Interactions in the Georgian Coastal Area of the Black Sea Revealed by Whole Genome Metagenomic Sequencing.
    Jaiani E; Kusradze I; Kokashvili T; Geliashvili N; Janelidze N; Kotorashvili A; Kotaria N; Guchmanidze A; Tediashvili M; Prangishvili D
    Mar Drugs; 2020 Nov; 18(11):. PubMed ID: 33202695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intricate interactions between the bloom-forming cyanobacterium Microcystis aeruginosa and foreign genetic elements, revealed by diversified clustered regularly interspaced short palindromic repeat (CRISPR) signatures.
    Kuno S; Yoshida T; Kaneko T; Sako Y
    Appl Environ Microbiol; 2012 Aug; 78(15):5353-60. PubMed ID: 22636003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutionary dynamics of clustered irregularly interspaced short palindromic repeat systems in the ocean metagenome.
    Sorokin VA; Gelfand MS; Artamonova II
    Appl Environ Microbiol; 2010 Apr; 76(7):2136-44. PubMed ID: 20118362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crass: identification and reconstruction of CRISPR from unassembled metagenomic data.
    Skennerton CT; Imelfort M; Tyson GW
    Nucleic Acids Res; 2013 May; 41(10):e105. PubMed ID: 23511966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR-Cas System of a Prevalent Human Gut Bacterium Reveals Hyper-targeting against Phages in a Human Virome Catalog.
    Soto-Perez P; Bisanz JE; Berry JD; Lam KN; Bondy-Denomy J; Turnbaugh PJ
    Cell Host Microbe; 2019 Sep; 26(3):325-335.e5. PubMed ID: 31492655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insights into the Human Virome Using CRISPR Spacers from Microbiomes.
    Hidalgo-Cantabrana C; Sanozky-Dawes R; Barrangou R
    Viruses; 2018 Sep; 10(9):. PubMed ID: 30205462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of Natural CRISPR Systems and Targets in the Human Microbiome.
    Münch PC; Franzosa EA; Stecher B; McHardy AC; Huttenhower C
    Cell Host Microbe; 2021 Jan; 29(1):94-106.e4. PubMed ID: 33217332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.