These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 2462930)
1. TI-205 nuclear magnetic resonance determination of the thermodynamic parameters for the binding of monovalent cations to gramicidins A and C. Hinton JF; Fernandez JQ; Shungu DC; Whaley WL; Koeppe RE; Millett FS Biophys J; 1988 Sep; 54(3):527-33. PubMed ID: 2462930 [TBL] [Abstract][Full Text] [Related]
2. Thermodynamic parameters for the binding of divalent cations to gramicidin A incorporated into a lipid environment by Tl-205 nuclear magnetic resonance. Hinton JF; Fernandez JQ; Shungu DC; Millett FS Biophys J; 1989 Feb; 55(2):327-30. PubMed ID: 2469486 [TBL] [Abstract][Full Text] [Related]
3. Equilibrium binding constants for the group I metal cations with gramicidin-A determined by competition studies and T1+-205 nuclear magnetic resonance spectroscopy. Hinton JF; Whaley WL; Shungu D; Koeppe RE; Millett FS Biophys J; 1986 Sep; 50(3):539-44. PubMed ID: 2428415 [TBL] [Abstract][Full Text] [Related]
4. Equilibrium binding constants for Tl+ with gramicidins A, B and C in a lysophosphatidylcholine environment determined by 205Tl nuclear magnetic resonance spectroscopy. Hinton JF; Koeppe RE; Shungu D; Whaley WL; Paczkowski JA; Millett FS Biophys J; 1986 Feb; 49(2):571-7. PubMed ID: 2420383 [TBL] [Abstract][Full Text] [Related]
5. Thallium-205 NMR determination of the thermodynamics of the interaction between the thallous ion and gramicidin dimers incorporated into micelles. Hinton JF; Young G; Millett FS Biochim Biophys Acta; 1983 Jan; 727(1):217-9. PubMed ID: 6186280 [TBL] [Abstract][Full Text] [Related]
6. Selectivity for cations in potassium and gramicidin channels of the muscle fibre membrane. Shvinka NE; Caffier G Biomed Biochim Acta; 1988; 47(6):481-7. PubMed ID: 2467665 [TBL] [Abstract][Full Text] [Related]
7. Molecular and channel-forming characteristics of gramicidin K's: a family of naturally occurring acylated gramicidins. Williams LP; Narcessian EJ; Andersen OS; Waller GR; Taylor MJ; Lazenby JP; Hinton JF; Koeppe RE Biochemistry; 1992 Aug; 31(32):7311-9. PubMed ID: 1380823 [TBL] [Abstract][Full Text] [Related]
8. Binding of alkaline cations to the double-helical form of gramicidin. Chen Y; Wallace BA Biophys J; 1996 Jul; 71(1):163-70. PubMed ID: 8804600 [TBL] [Abstract][Full Text] [Related]
9. Thallium-205 nuclear magnetic resonance study of the thallium(I)-gramicidin A association in trifluoroethanol. Turner GL; Hinton JF; Millett FS Biochemistry; 1982 Feb; 21(4):646-51. PubMed ID: 6176261 [TBL] [Abstract][Full Text] [Related]
10. Nuclear magnetic resonance of 23Na ions interacting with the gramicidin channel. Monoi H Biophys J; 1985 Oct; 48(4):643-62. PubMed ID: 2413919 [TBL] [Abstract][Full Text] [Related]
11. Molecular dynamics computations and solid state nuclear magnetic resonance of the gramicidin cation channel. Chiu SW; Nicholson LK; Brenneman MT; Subramaniam S; Teng Q; McCammon JA; Cross TA; Jakobsson E Biophys J; 1991 Oct; 60(4):974-8. PubMed ID: 1720680 [TBL] [Abstract][Full Text] [Related]
12. Selective binding of monovalent cations to the stacking G-quartet structure formed by guanosine 5'-monophosphate: a solid-state NMR study. Wong A; Wu G J Am Chem Soc; 2003 Nov; 125(45):13895-905. PubMed ID: 14599230 [TBL] [Abstract][Full Text] [Related]
13. Thallous ion interaction with gramicidin incorporated in micelles studied by thallium-205 nuclear magnetic resonance. Hinton JF; Young G; Millett FS Biochemistry; 1982 Feb; 21(4):651-4. PubMed ID: 6176262 [No Abstract] [Full Text] [Related]
14. [The cation specificity of the potassium and gramicidin channels of muscle fiber membrane]. Shvinka NE; Caffier G Tsitologiia; 1988 Sep; 30(9):1101-7. PubMed ID: 2464221 [TBL] [Abstract][Full Text] [Related]
15. The effects of monovalent cations Li+, Na+, K+, NH4+, Rb+ and Cs+ on the solid and solution structures of the nucleic acid components. Metal ion binding and sugar conformation. Tajmir-Riahi HA; Messaoudi S J Biomol Struct Dyn; 1992 Oct; 10(2):345-65. PubMed ID: 1334674 [TBL] [Abstract][Full Text] [Related]
16. Cation transport: an example of structural based selectivity. Tian F; Cross TA J Mol Biol; 1999 Feb; 285(5):1993-2003. PubMed ID: 9925780 [TBL] [Abstract][Full Text] [Related]
17. Conformations of gramicidin A and its 9,11,13,15-phenylalanyl analog in dimethyl sulfoxide and chloroform. Heitz F; Heitz A; Trudelle Y Biophys Chem; 1986 Jul; 24(2):149-60. PubMed ID: 2428417 [TBL] [Abstract][Full Text] [Related]
18. Interactions in cation permeation through the gramicidin channel. Cs, Rb, K, Na, Li, Tl, H, and effects of anion binding. Eisenman G; Sandblom J; Neher E Biophys J; 1978 May; 22(2):307-40. PubMed ID: 77689 [TBL] [Abstract][Full Text] [Related]
19. The divalent cation-binding sites of gramicidin A transmembrane ion-channel. Golovanov AP; Barsukov IL; Arseniev AS; Bystrov VF; Sukhanov SV; Barsukov LI Biopolymers; 1991 Mar; 31(4):425-34. PubMed ID: 1713797 [TBL] [Abstract][Full Text] [Related]
20. Cation control in functional helical programming: structures of a D,L-peptide ion channel. Arndt HD; Bockelmann D; Knoll A; Lamberth S; Griesinger C; Koert U Angew Chem Int Ed Engl; 2002 Nov; 41(21):4062-5. PubMed ID: 12412082 [No Abstract] [Full Text] [Related] [Next] [New Search]