These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 24629641)

  • 1. Using active shape modeling based on MRI to study morphologic and pitch-related functional changes affecting vocal structures and the airway.
    Miller NA; Gregory JS; Aspden RM; Stollery PJ; Gilbert FJ
    J Voice; 2014 Sep; 28(5):554-64. PubMed ID: 24629641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Weight-bearing MR imaging as an option in the study of gravitational effects on the vocal tract of untrained subjects in singing phonation.
    Traser L; Burdumy M; Richter B; Vicari M; Echternach M
    PLoS One; 2014; 9(11):e112405. PubMed ID: 25379885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationships between vocal structures, the airway, and craniocervical posture investigated using magnetic resonance imaging.
    Miller NA; Gregory JS; Semple SI; Aspden RM; Stollery PJ; Gilbert FJ
    J Voice; 2012 Jan; 26(1):102-9. PubMed ID: 21236638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of humming and pitch on craniofacial and craniocervical morphology measured using MRI.
    Miller NA; Gregory JS; Semple SI; Aspden RM; Stollery PJ; Gilbert FJ
    J Voice; 2012 Jan; 26(1):90-101. PubMed ID: 21435837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lower Vocal Tract Morphologic Adjustments Are Relevant for Voice Timbre in Singing.
    Mainka A; Poznyakovskiy A; Platzek I; Fleischer M; Sundberg J; Mürbe D
    PLoS One; 2015; 10(7):e0132241. PubMed ID: 26186691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of supine and upright position on vocal tract configurations during singing--a comparative study in professional tenors.
    Traser L; Burdumy M; Richter B; Vicari M; Echternach M
    J Voice; 2013 Mar; 27(2):141-8. PubMed ID: 23380394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic MRI of larynx and vocal fold vibrations in normal phonation.
    Ahmad M; Dargaud J; Morin A; Cotton F
    J Voice; 2009 Mar; 23(2):235-9. PubMed ID: 18082366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The impact of phonation mode and vocal technique on vocal fold closure in young females with normal voice quality.
    De Bodt MS; Clement G; Wuyts FL; Borghs C; Van Lierde KM
    J Voice; 2012 Nov; 26(6):818.e1-4. PubMed ID: 23177749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electroglottographic study of seven semi-occluded exercises: LaxVox, straw, lip-trill, tongue-trill, humming, hand-over-mouth, and tongue-trill combined with hand-over-mouth.
    Andrade PA; Wood G; Ratcliffe P; Epstein R; Pijper A; Svec JG
    J Voice; 2014 Sep; 28(5):589-95. PubMed ID: 24560003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional vocal tract imaging and formant structure: varying vocal register, pitch, and loudness.
    Tom K; Titze IR; Hoffman EA; Story BH
    J Acoust Soc Am; 2001 Feb; 109(2):742-7. PubMed ID: 11248978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Normative standards for vocal tract dimensions by race as measured by acoustic pharyngometry.
    Xue SA; Hao JG
    J Voice; 2006 Sep; 20(3):391-400. PubMed ID: 16243483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphologic differences in the vocal tract resonance cavities of voice professionals: an MRI-based study.
    Rua Ventura SM; Freitas DR; Ramos IM; Tavares JM
    J Voice; 2013 Mar; 27(2):132-40. PubMed ID: 23406840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Functional structure of the human vocal cord].
    Friedrich G; Kainz J; Freidl W
    Laryngorhinootologie; 1993 May; 72(5):215-24. PubMed ID: 8323625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards the automatic study of the vocal tract from magnetic resonance images.
    Vasconcelos MJ; Ventura SM; Freitas DR; Tavares JM
    J Voice; 2011 Nov; 25(6):732-42. PubMed ID: 20952159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-second MRI of a three-dimensional vocal tract to measure dynamic articulator modifications.
    Burdumy M; Traser L; Burk F; Richter B; Echternach M; Korvink JG; Hennig J; Zaitsev M
    J Magn Reson Imaging; 2017 Jul; 46(1):94-101. PubMed ID: 27943448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Principal dimensions of voice production and their role in vocal expression.
    Zhang Z
    J Acoust Soc Am; 2024 Jul; 156(1):278-283. PubMed ID: 38980102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vocal tract and register changes analysed by real-time MRI in male professional singers-a pilot study.
    Echternach M; Sundberg J; Arndt S; Breyer T; Markl M; Schumacher M; Richter B
    Logoped Phoniatr Vocol; 2008; 33(2):67-73. PubMed ID: 18569645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A parametric vocal fold model based on magnetic resonance imaging.
    Wu L; Zhang Z
    J Acoust Soc Am; 2016 Aug; 140(2):EL159. PubMed ID: 27586774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Assessment with magnetic resonance of laryngeal and oropharyngeal movements during phonation].
    Di Girolamo M; Corsetti A; Laghi A; Ferone E; Iannicelli E; Rossi M; Pavone P; Passariello R
    Radiol Med; 1996; 92(1-2):33-40. PubMed ID: 8966270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vocal fold dimensions in professional opera singers as measured by means of laser triangulation.
    Larsson H; Hertegård S
    J Voice; 2008 Nov; 22(6):734-9. PubMed ID: 17509820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.