These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 24629928)
41. The response of the apical turn of cochlea modeled with a tuned amplifier with negative feedback. Khanna SM Hear Res; 2004 Aug; 194(1-2):97-108. PubMed ID: 15276681 [TBL] [Abstract][Full Text] [Related]
44. Response to a pure tone in a nonlinear mechanical-electrical-acoustical model of the cochlea. Meaud J; Grosh K Biophys J; 2012 Mar; 102(6):1237-46. PubMed ID: 22455906 [TBL] [Abstract][Full Text] [Related]
45. Experimental and numerical analysis of soft tissue stiffness measurement using manual indentation device--significance of indentation geometry and soft tissue thickness. Iivarinen JT; Korhonen RK; Jurvelin JS Skin Res Technol; 2014 Aug; 20(3):347-54. PubMed ID: 24267492 [TBL] [Abstract][Full Text] [Related]
46. Basilar membrane velocity in a cochlea with a modified organ of Corti. Eze N; Olson ES Biophys J; 2011 Feb; 100(4):858-67. PubMed ID: 21320429 [TBL] [Abstract][Full Text] [Related]
47. Cochlear model including three-dimensional fluid and four modes of partition flexibility. Taber LA; Steele CR J Acoust Soc Am; 1981 Aug; 70(2):426-36. PubMed ID: 7288028 [TBL] [Abstract][Full Text] [Related]
48. A model cochlear partition involving longitudinal elasticity. Jaffer TS; Kunov H; Wong W J Acoust Soc Am; 2002 Aug; 112(2):576-89. PubMed ID: 12186039 [TBL] [Abstract][Full Text] [Related]
50. The cochlea in gerbilline rodents. Plassmann W; Peetz W; Schmidt M Brain Behav Evol; 1987; 30(1-2):82-101. PubMed ID: 3620898 [TBL] [Abstract][Full Text] [Related]
51. Orthotropic material properties of the gerbil basilar membrane. Liu S; White RD J Acoust Soc Am; 2008 Apr; 123(4):2160-71. PubMed ID: 18397023 [TBL] [Abstract][Full Text] [Related]
52. Optical Coherence Tomography to Measure Sound-Induced Motions Within the Mouse Organ of Corti In Vivo. Jawadi Z; Applegate BE; Oghalai JS Methods Mol Biol; 2016; 1427():449-62. PubMed ID: 27259941 [TBL] [Abstract][Full Text] [Related]
53. Static versus dynamic gerbil tympanic membrane elasticity: derivation of the complex modulus. Aernouts J; Dirckx JJ Biomech Model Mechanobiol; 2012 Jul; 11(6):829-40. PubMed ID: 22038402 [TBL] [Abstract][Full Text] [Related]
54. A model of cochlear micromechanics. Fukazawa T Hear Res; 1997 Nov; 113(1-2):182-90. PubMed ID: 9387997 [TBL] [Abstract][Full Text] [Related]
55. Tectorial membrane: a possible sharpening effect on the frequency analysis in the cochlea. Zwislocki JJ Acta Otolaryngol; 1979; 87(3-4):267-9. PubMed ID: 443008 [TBL] [Abstract][Full Text] [Related]
56. Electromotile hearing: evidence from basilar membrane motion and otoacoustic emissions. Nuttall AL; Ren T Hear Res; 1995 Dec; 92(1-2):170-7. PubMed ID: 8647740 [TBL] [Abstract][Full Text] [Related]
57. Estimation of the Young's modulus of the human pars tensa using in-situ pressurization and inverse finite-element analysis. Rohani SA; Ghomashchi S; Agrawal SK; Ladak HM Hear Res; 2017 Mar; 345():69-78. PubMed ID: 28087415 [TBL] [Abstract][Full Text] [Related]
58. Tuned hair cells for hearing, but tuned basilar membrane for overload protection: evidence from dolphins, bats, and desert rodents. Braun M Hear Res; 1994 Jul; 78(1):98-114. PubMed ID: 7961182 [TBL] [Abstract][Full Text] [Related]
59. Developmental expression of proteoglycans in the tectorial and basilar membrane of the gerbil cochlea. Munyer PD; Schulte BA Hear Res; 1995 May; 85(1-2):85-94. PubMed ID: 7559182 [TBL] [Abstract][Full Text] [Related]
60. Cochlear macromechanics: time domain solutions. Allen JB; Sondhi MM J Acoust Soc Am; 1979 Jul; 66(1):123-32. PubMed ID: 489828 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]