BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

486 related articles for article (PubMed ID: 24630105)

  • 21. The microtubule polymerase Stu2 promotes oligomerization of the γ-TuSC for cytoplasmic microtubule nucleation.
    Gunzelmann J; Rüthnick D; Lin TC; Zhang W; Neuner A; Jäkle U; Schiebel E
    Elife; 2018 Sep; 7():. PubMed ID: 30222109
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microtubule dynamics regulation reconstituted in budding yeast lysates.
    Bergman ZJ; Wong J; Drubin DG; Barnes G
    J Cell Sci; 2018 Sep; 132(4):. PubMed ID: 30185524
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The contribution of αβ-tubulin curvature to microtubule dynamics.
    Brouhard GJ; Rice LM
    J Cell Biol; 2014 Nov; 207(3):323-34. PubMed ID: 25385183
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A tethered delivery mechanism explains the catalytic action of a microtubule polymerase.
    Ayaz P; Munyoki S; Geyer EA; Piedra FA; Vu ES; Bromberg R; Otwinowski Z; Grishin NV; Brautigam CA; Rice LM
    Elife; 2014 Aug; 3():e03069. PubMed ID: 25097237
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Going solo: measuring the motions of microtubules with an in vitro assay for TIRF microscopy.
    Leslie K; Galjart N
    Methods Cell Biol; 2013; 115():109-24. PubMed ID: 23973069
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural transitions in the GTP cap visualized by cryo-electron microscopy of catalytically inactive microtubules.
    LaFrance BJ; Roostalu J; Henkin G; Greber BJ; Zhang R; Normanno D; McCollum CO; Surrey T; Nogales E
    Proc Natl Acad Sci U S A; 2022 Jan; 119(2):. PubMed ID: 34996871
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Live-cell imaging of microtubule dynamics in hyphae of Neurospora crassa.
    Uchida M; Mouriño-Pérez RR; Roberson RW
    Methods Mol Biol; 2010; 638():259-68. PubMed ID: 20238275
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multiple domains of human CLASP contribute to microtubule dynamics and organization in vitro and in Xenopus egg extracts.
    Patel K; Nogales E; Heald R
    Cytoskeleton (Hoboken); 2012 Mar; 69(3):155-65. PubMed ID: 22278908
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Crystal structure of a TOG domain: conserved features of XMAP215/Dis1-family TOG domains and implications for tubulin binding.
    Al-Bassam J; Larsen NA; Hyman AA; Harrison SC
    Structure; 2007 Mar; 15(3):355-62. PubMed ID: 17355870
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Visualization of the stop of microtubule depolymerization that occurs at the high-density region of microtubule-associated protein 2 (MAP2).
    Ichihara K; Kitazawa H; Iguchi Y; Hotani H; Itoh TJ
    J Mol Biol; 2001 Sep; 312(1):107-18. PubMed ID: 11545589
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Platform for Medium-Throughput Cell-Free Analyses of Microtubule-Interacting Proteins Using Mammalian Cell Lysates.
    Jijumon AS; Krishnan A; Janke C
    Curr Protoc; 2024 Jun; 4(6):e1070. PubMed ID: 38865215
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The structure of microtubule ends during the elongation and shortening phases of dynamic instability examined by negative-stain electron microscopy.
    Simon JR; Salmon ED
    J Cell Sci; 1990 Aug; 96 ( Pt 4)():571-82. PubMed ID: 2283357
    [TBL] [Abstract][Full Text] [Related]  

  • 33. TOG-tubulin binding specificity promotes microtubule dynamics and mitotic spindle formation.
    Byrnes AE; Slep KC
    J Cell Biol; 2017 Jun; 216(6):1641-1657. PubMed ID: 28512144
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Direct regulation of microtubule dynamics by KIF17 motor and tail domains.
    Acharya BR; Espenel C; Kreitzer G
    J Biol Chem; 2013 Nov; 288(45):32302-32313. PubMed ID: 24072717
    [TBL] [Abstract][Full Text] [Related]  

  • 35. XMAP215 polymerase activity is built by combining multiple tubulin-binding TOG domains and a basic lattice-binding region.
    Widlund PO; Stear JH; Pozniakovsky A; Zanic M; Reber S; Brouhard GJ; Hyman AA; Howard J
    Proc Natl Acad Sci U S A; 2011 Feb; 108(7):2741-6. PubMed ID: 21282620
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stu2, the budding yeast XMAP215/Dis1 homolog, promotes assembly of yeast microtubules by increasing growth rate and decreasing catastrophe frequency.
    Podolski M; Mahamdeh M; Howard J
    J Biol Chem; 2014 Oct; 289(41):28087-93. PubMed ID: 25172511
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An unconventional interaction between Dis1/TOG and Mal3/EB1 in fission yeast promotes the fidelity of chromosome segregation.
    Matsuo Y; Maurer SP; Yukawa M; Zakian S; Singleton MR; Surrey T; Toda T
    J Cell Sci; 2016 Dec; 129(24):4592-4606. PubMed ID: 27872152
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Measuring the Effects of Microtubule-Associated Proteins on Microtubule Dynamics In Vitro.
    Zanic M
    Methods Mol Biol; 2016; 1413():47-61. PubMed ID: 27193842
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Crescerin uses a TOG domain array to regulate microtubules in the primary cilium.
    Das A; Dickinson DJ; Wood CC; Goldstein B; Slep KC
    Mol Biol Cell; 2015 Nov; 26(23):4248-64. PubMed ID: 26378256
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural basis for the extended CAP-Gly domains of p150(glued) binding to microtubules and the implication for tubulin dynamics.
    Wang Q; Crevenna AH; Kunze I; Mizuno N
    Proc Natl Acad Sci U S A; 2014 Aug; 111(31):11347-52. PubMed ID: 25059720
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.