These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 24630250)
1. A comparative study of the terrestrial ecotoxicity of selected protic and aprotic ionic liquids. Peric B; Sierra J; Martí E; Cruañas R; Garau MA Chemosphere; 2014 Aug; 108():418-25. PubMed ID: 24630250 [TBL] [Abstract][Full Text] [Related]
2. Terrestrial ecotoxicity of short aliphatic protic ionic liquids. Peric B; Martí E; Sierra J; Cruañas R; Iglesias M; Garau MA Environ Toxicol Chem; 2011 Dec; 30(12):2802-9. PubMed ID: 21935980 [TBL] [Abstract][Full Text] [Related]
3. (Eco)toxicity and biodegradability of selected protic and aprotic ionic liquids. Peric B; Sierra J; Martí E; Cruañas R; Garau MA; Arning J; Bottin-Weber U; Stolte S J Hazard Mater; 2013 Oct; 261():99-105. PubMed ID: 23912075 [TBL] [Abstract][Full Text] [Related]
4. Quantitative structure-activity relationship (QSAR) prediction of (eco)toxicity of short aliphatic protic ionic liquids. Peric B; Sierra J; Martí E; Cruañas R; Garau MA Ecotoxicol Environ Saf; 2015 May; 115():257-62. PubMed ID: 25728357 [TBL] [Abstract][Full Text] [Related]
5. Biodiversity of soil bacteria exposed to sub-lethal concentrations of phosphonium-based ionic liquids: Effects of toxicity and biodegradation. Sydow M; Owsianiak M; Framski G; Woźniak-Karczewska M; Piotrowska-Cyplik A; Ławniczak Ł; Szulc A; Zgoła-Grześkowiak A; Heipieper HJ; Chrzanowski Ł Ecotoxicol Environ Saf; 2018 Jan; 147():157-164. PubMed ID: 28843187 [TBL] [Abstract][Full Text] [Related]
6. Growth inhibition and efficiency of the antioxidant system in spring barley and common radish grown on soil polluted ionic liquids with iodide anions. Biczak R; Śnioszek M; Telesiński A; Pawłowska B Ecotoxicol Environ Saf; 2017 May; 139():463-471. PubMed ID: 28213323 [TBL] [Abstract][Full Text] [Related]
7. Effects of 1-Alkyl-3-Methylimidazolium Nitrate on Soil Physical and Chemical Properties and Microbial Biomass. Zhou T; Wang J; Ma Z; Du Z; Zhang C; Zhu L; Wang J Arch Environ Contam Toxicol; 2018 May; 74(4):577-586. PubMed ID: 29478185 [TBL] [Abstract][Full Text] [Related]
8. Role of cation structure in the phytotoxicity of ionic liquids: growth inhibition and oxidative stress in spring barley and common radish. Biczak R; Pawłowska B; Telesiński A; Kapuśniak J Environ Sci Pollut Res Int; 2017 Aug; 24(22):18444-18457. PubMed ID: 28643283 [TBL] [Abstract][Full Text] [Related]
9. Ecotoxicity of binary mixtures of ILs and inorganic salts of electrochemical interest. Parajó JJ; Vallet P; Varela LM; Villanueva M; Salgado J Environ Sci Pollut Res Int; 2022 Apr; 29(17):24983-24994. PubMed ID: 34839439 [TBL] [Abstract][Full Text] [Related]
10. New insight into the environmental impact of two imidazolium ionic liquids. Effects on seed germination and soil microbial activity. Salgado J; Parajó JJ; Teijeira T; Cruz O; Proupín J; Villanueva M; Rodríguez-Añón JA; Verdes PV; Reyes O Chemosphere; 2017 Oct; 185():665-672. PubMed ID: 28734209 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of dissipation mechanisms by Lolium perenne L, and Raphanus sativus for pentachlorophenol (PCP) in copper co-contaminated soil. Lin Q; Wang Z; Ma S; Chen Y Sci Total Environ; 2006 Sep; 368(2-3):814-22. PubMed ID: 16643990 [TBL] [Abstract][Full Text] [Related]
13. The phytotoxicity of ionic liquids from natural pool of (-)-menthol with tetrafluoroborate anion. Biczak R; Pawłowska B; Feder-Kubis J Environ Sci Pollut Res Int; 2015 Aug; 22(15):11740-54. PubMed ID: 25854206 [TBL] [Abstract][Full Text] [Related]
14. Comparison of the effect of ionic liquids containing hexafluorophosphate and trifluoroacetate anions on the inhibition of growth and oxidative stress in spring barley and common radish. Biczak R; Pawłowska B; Feder-Kubis J; Telesiński A Environ Toxicol Chem; 2017 Aug; 36(8):2167-2177. PubMed ID: 28145604 [TBL] [Abstract][Full Text] [Related]
15. Ionic Liquids Toxicity-Benefits and Threats. Flieger J; Flieger M Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32872533 [TBL] [Abstract][Full Text] [Related]
16. The role of the anion in the toxicity of imidazolium ionic liquids. Biczak R; Pawłowska B; Bałczewski P; Rychter P J Hazard Mater; 2014 Jun; 274():181-90. PubMed ID: 24793294 [TBL] [Abstract][Full Text] [Related]
17. Effects of alkyl-imidazolium ionic liquid [Omim]Cl on the functional diversity of soil microbial communities. Guo P; Zhu L; Wang J; Wang J; Liu T Environ Sci Pollut Res Int; 2015 Jun; 22(12):9059-66. PubMed ID: 25572271 [TBL] [Abstract][Full Text] [Related]
18. Toxicity Evaluation of Three Imidazolium-based ionic liquids ([C Xu Y; Wang J; Du Z; Li B; Juhasz A; Tan M; Zhu L; Wang J Chemosphere; 2020 Feb; 240():124919. PubMed ID: 31726585 [TBL] [Abstract][Full Text] [Related]
19. Alkyl chain length affecting uptake of imidazolium based ionic liquids by ryegrass (Lolium perenne L.). Habibul N; Hu YY; Hu Y; Sheng GP J Hazard Mater; 2021 Jan; 401():123376. PubMed ID: 32652424 [TBL] [Abstract][Full Text] [Related]
20. Elucidating interactions and conductivity of newly synthesised low bandgap polymer with protic and aprotic ionic liquids. Attri P; Lee SH; Hwang SW; Kim JI; Lee SW; Kwon GC; Choi EH; Kim IT PLoS One; 2013; 8(7):e68970. PubMed ID: 23874829 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]