These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 24630251)

  • 41. The number of components in a mixture determines whether synergistic and antagonistic or additive toxicity predominate: the funnel hypothesis.
    Warne MS; Hawker DW
    Ecotoxicol Environ Saf; 1995 Jun; 31(1):23-8. PubMed ID: 7544261
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A similarity-based QSAR model for predicting acute toxicity towards the fathead minnow (Pimephales promelas).
    Cassotti M; Ballabio D; Todeschini R; Consonni V
    SAR QSAR Environ Res; 2015; 26(3):217-43. PubMed ID: 25780951
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A baseline inhalation toxicity model for narcosis in mammals.
    Veith GD; Petkova EP; Wallace KB
    SAR QSAR Environ Res; 2009 Jul; 20(5-6):567-78. PubMed ID: 19916115
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Investigation of the Verhaar scheme for predicting acute aquatic toxicity: improving predictions obtained from Toxtree ver. 2.6.
    Ellison CM; Madden JC; Cronin MT; Enoch SJ
    Chemosphere; 2015 Nov; 139():146-54. PubMed ID: 26092094
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The physicochemical basis of QSARs for baseline toxicity.
    Mackay D; Arnot JA; Petkova EP; Wallace KB; Call DJ; Brooke LT; Veith GD
    SAR QSAR Environ Res; 2009; 20(3-4):393-414. PubMed ID: 19544198
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An updated weight of evidence approach to the aquatic hazard assessment of Bisphenol A and the derivation a new predicted no effect concentration (Pnec) using a non-parametric methodology.
    Wright-Walters M; Volz C; Talbott E; Davis D
    Sci Total Environ; 2011 Jan; 409(4):676-85. PubMed ID: 21130487
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Toxicity of organic pollutants to seven aquatic organisms: effect of polarity and ionization.
    Qin WC; Su LM; Zhang XJ; Qin HW; Wen Y; Guo Z; Sun FT; Sheng LX; Zhao YH; Abraham MH
    SAR QSAR Environ Res; 2010 Jul; 21(5-6):389-401. PubMed ID: 20818578
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Data quality and relevance in ecotoxicity: The undocumented influences of model assumptions and modifying factors on aquatic toxicity dose metrics.
    McCarty LS
    Regul Toxicol Pharmacol; 2015 Nov; 73(2):552-61. PubMed ID: 26343167
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Norm index for predicting the rate constants of organic contaminants oxygenated with sulfate radical.
    Shi Y; Yan F; Jia Q; Wang Q
    Environ Sci Pollut Res Int; 2020 Jan; 27(1):974-982. PubMed ID: 31820228
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Application of a sigmapolycyclic aromatic hydrocarbon model and a logistic regression model to sediment toxicity data based on a species-specific, water-only LC50 toxic unit for Hyalella azteca.
    Lee JH; Landrum PF; Field LJ; Koh CH
    Environ Toxicol Chem; 2001 Sep; 20(9):2102-13. PubMed ID: 11521842
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Potential toxicity of pesticides measured in midwestern streams to aquatic organisms.
    Battaglin W; Fairchild J
    Water Sci Technol; 2002; 45(9):95-102. PubMed ID: 12079130
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Comparison of in vitro and in vivo acute fish toxicity in relation to toxicant mode of action.
    Knauer K; Lampert C; Gonzalez-Valero J
    Chemosphere; 2007 Jul; 68(8):1435-41. PubMed ID: 17512969
    [TBL] [Abstract][Full Text] [Related]  

  • 53. QSAR issues in aquatic toxicity of surfactants.
    Roberts DW
    Sci Total Environ; 1991 Dec; 109-110():557-68. PubMed ID: 1815374
    [TBL] [Abstract][Full Text] [Related]  

  • 54. QSAR trout toxicity models on aromatic pesticides.
    Slavov S; Gini G; Benfenati E
    J Environ Sci Health B; 2008 Nov; 43(8):633-7. PubMed ID: 18941985
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Predicting algal growth inhibition toxicity: three-step strategy using structural and physicochemical properties.
    Furuhama A; Hasunuma K; Hayashi TI; Tatarazako N
    SAR QSAR Environ Res; 2016 May; 27(5):343-62. PubMed ID: 27171903
    [TBL] [Abstract][Full Text] [Related]  

  • 56. QSAR and chemometric approaches for setting water quality objectives for dangerous chemicals.
    Vighi M; Gramatica P; Consolaro F; Todeschini R
    Ecotoxicol Environ Saf; 2001 Jul; 49(3):206-20. PubMed ID: 11440473
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Development of algal interspecies correlation estimation models for chemical hazard assessment.
    Brill JL; Belanger SE; Chaney JG; Dyer SD; Raimondo S; Barron MG; Pittinger CA
    Environ Toxicol Chem; 2016 Sep; 35(9):2368-78. PubMed ID: 26792236
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Proteomic and histopathological response in the gills of Poecilia reticulata exposed to glyphosate-based herbicide.
    Rocha TL; Santos AP; Yamada ÁT; Soares CM; Borges CL; Bailão AM; Sabóia-Morais SM
    Environ Toxicol Pharmacol; 2015 Jul; 40(1):175-86. PubMed ID: 26141659
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Ecological and toxicological experiments with test guppies and Daphnia in research on the effect of pesticides in water].
    Strateva A; Tsankova T
    Probl Khig; 1986; 11():32-7. PubMed ID: 3823037
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Evaluation of critical body residue QSARs for predicting organic chemical toxicity to aquatic organisms.
    Barron MG; Anderson MJ; Lipton J; Dixon DG
    SAR QSAR Environ Res; 1997; 6(1-2):47-62. PubMed ID: 9241865
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.