These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
378 related articles for article (PubMed ID: 24630368)
1. Continuous volatile fatty acid production from waste activated sludge hydrolyzed at pH 12. Yang X; Wan C; Lee DJ; Du M; Pan X; Wan F Bioresour Technol; 2014 Sep; 168():173-9. PubMed ID: 24630368 [TBL] [Abstract][Full Text] [Related]
2. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
3. Continuous liquid fermentation of pretreated waste activated sludge for high rate volatile fatty acids production and online nutrients recovery. Zhang L; Liu H; Zheng Z; Ma H; Yang M; Liu H Bioresour Technol; 2018 Feb; 249():962-968. PubMed ID: 29145123 [TBL] [Abstract][Full Text] [Related]
4. Efficient recovery of carbon, nitrogen, and phosphorus from waste activated sludge. Chen Y; Zheng X; Feng L; Yang H Water Sci Technol; 2013; 68(4):916-22. PubMed ID: 23985524 [TBL] [Abstract][Full Text] [Related]
5. Bioproduction of volatile fatty acid from the fermentation of waste activated sludge for in situ denitritation. Wang B; Peng Y; Guo Y; Wang S J Biosci Bioeng; 2016 Apr; 121(4):431-4. PubMed ID: 26475401 [TBL] [Abstract][Full Text] [Related]
6. Enhanced excess sludge hydrolysis and acidification in an activated sludge side-stream reactor process with single-stage sludge alkaline treatment: a pilot scale study. Yan P; Guo JS; Wang J; Ji FY; Zhang CC; Chen YP; Shen Y Environ Sci Pollut Res Int; 2016 Nov; 23(22):22761-22770. PubMed ID: 27562811 [TBL] [Abstract][Full Text] [Related]
7. Acidogenic fermentation of iron-enhanced primary sedimentation sludge under different pH conditions for production of volatile fatty acids. Lin L; Li XY Chemosphere; 2018 Mar; 194():692-700. PubMed ID: 29245135 [TBL] [Abstract][Full Text] [Related]
8. Enhancement of waste activated sludge protein conversion and volatile fatty acids accumulation during waste activated sludge anaerobic fermentation by carbohydrate substrate addition: the effect of pH. Feng L; Chen Y; Zheng X Environ Sci Technol; 2009 Jun; 43(12):4373-80. PubMed ID: 19603649 [TBL] [Abstract][Full Text] [Related]
9. Improved bioproduction of short-chain fatty acids from waste activated sludge by perennial ryegrass addition. Jia S; Dai X; Zhang D; Dai L; Wang R; Zhao J Water Res; 2013 Sep; 47(13):4576-84. PubMed ID: 23764607 [TBL] [Abstract][Full Text] [Related]
10. A novel strategy for improving volatile fatty acid purity, phosphorus removal efficiency, and fermented sludge dewaterability during waste activated sludge fermentation. Chen Y; Ruhyadi R; Huang J; Yan W; Wang G; Shen N; Hanggoro W Waste Manag; 2021 Jan; 119():195-201. PubMed ID: 33070089 [TBL] [Abstract][Full Text] [Related]
11. Use of a byproduct of magnesium oxide production to precipitate phosphorus and nitrogen as struvite from wastewater treatment liquors. Quintana M; Colmenarejo MF; Barrera J; García G; García E; Bustos A J Agric Food Chem; 2004 Jan; 52(2):294-9. PubMed ID: 14733511 [TBL] [Abstract][Full Text] [Related]
12. Pilot-scale waste activated sludge alkaline fermentation, fermentation liquid separation, and application of fermentation liquid to improve biological nutrient removal. Li X; Chen H; Hu L; Yu L; Chen Y; Gu G Environ Sci Technol; 2011 Mar; 45(5):1834-9. PubMed ID: 21280571 [TBL] [Abstract][Full Text] [Related]
13. Optimal production of polyhydroxyalkanoates (PHA) in activated sludge fed by volatile fatty acids (VFAs) generated from alkaline excess sludge fermentation. Mengmeng C; Hong C; Qingliang Z; Shirley SN; Jie R Bioresour Technol; 2009 Feb; 100(3):1399-405. PubMed ID: 18945612 [TBL] [Abstract][Full Text] [Related]
14. Fermentation and elutriation of primary sludge: effect of SRT on process performance. Bouzas A; Ribes J; Ferrer J; Seco A Water Res; 2007 Feb; 41(4):747-56. PubMed ID: 17224171 [TBL] [Abstract][Full Text] [Related]
15. Biological short-chain fatty acids (SCFAs) production from waste-activated sludge affected by surfactant. Jiang S; Chen Y; Zhou Q; Gu G Water Res; 2007 Jul; 41(14):3112-20. PubMed ID: 17499838 [TBL] [Abstract][Full Text] [Related]
16. Nutrient release, recovery and removal from waste sludge of a biological nutrient removal system. Wang Y; Zheng SJ; Pei LY; Ke L; Peng DC; Xia SQ Environ Technol; 2014; 35(21-24):2734-42. PubMed ID: 25176308 [TBL] [Abstract][Full Text] [Related]
17. Enhanced volatile fatty acids production of waste activated sludge under salinity conditions: Performance and mechanisms. Su G; Wang S; Yuan Z; Peng Y J Biosci Bioeng; 2016 Mar; 121(3):293-8. PubMed ID: 26320405 [TBL] [Abstract][Full Text] [Related]
18. Recovery of nitrogen and phosphorus from alkaline fermentation liquid of waste activated sludge and application of the fermentation liquid to promote biological municipal wastewater treatment. Tong J; Chen Y Water Res; 2009 Jul; 43(12):2969-76. PubMed ID: 19443007 [TBL] [Abstract][Full Text] [Related]
19. High-rate anaerobic hydrolysis and acidogenesis of sewage sludge in a modified upflow reactor. Yu HQ; Zheng XJ; Hu ZH; Gu GW Water Sci Technol; 2003; 48(4):69-75. PubMed ID: 14531424 [TBL] [Abstract][Full Text] [Related]
20. Hydrolysis and acidification of waste activated sludge at different pHs. Chen Y; Jiang S; Yuan H; Zhou Q; Gu G Water Res; 2007 Feb; 41(3):683-9. PubMed ID: 16987541 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]