These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 24630460)
1. Nickel phytoremediation potential of the Mediterranean Alyssoides utriculata (L.) Medik. Roccotiello E; Serrano HC; Mariotti MG; Branquinho C Chemosphere; 2015 Jan; 119():1372-1378. PubMed ID: 24630460 [TBL] [Abstract][Full Text] [Related]
2. Nickel and copper accumulation strategies in Odontarrhena obovata growing on copper smelter-influenced and non-influenced serpentine soils: a comparative field study. Tripti ; Kumar A; Maleva M; Borisova G; Chukina N; Morozova M; Kiseleva I Environ Geochem Health; 2021 Apr; 43(4):1401-1413. PubMed ID: 32347513 [TBL] [Abstract][Full Text] [Related]
3. Nickel and other metal uptake and accumulation by species of Alyssum (Brassicaceae) from the ultramafics of Iran. Ghaderian SM; Mohtadi A; Rahiminejad MR; Baker AJ Environ Pollut; 2007 Jan; 145(1):293-8. PubMed ID: 16781032 [TBL] [Abstract][Full Text] [Related]
4. Rhizosphere response to nickel in a facultative hyperaccumulator. Rosatto S; Roccotiello E; Di Piazza S; Cecchi G; Greco G; Zotti M; Vezzulli L; Mariotti M Chemosphere; 2019 Oct; 232():243-253. PubMed ID: 31154185 [TBL] [Abstract][Full Text] [Related]
5. The impact of Ni on the physiology of a Mediterranean Ni-hyperaccumulating plant. Roccotiello E; Serrano HC; Mariotti MG; Branquinho C Environ Sci Pollut Res Int; 2016 Jun; 23(12):12414-22. PubMed ID: 26983814 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of the phytoremediation potential of Arundo donax L. for nickel-contaminated soil. Atma W; Larouci M; Meddah B; Benabdeli K; Sonnet P Int J Phytoremediation; 2017 Apr; 19(4):377-386. PubMed ID: 27592714 [TBL] [Abstract][Full Text] [Related]
7. Degradation of Alyssum murale biomass in soil. Zhang L; Angle JS; Delorme T; Chaney RL Int J Phytoremediation; 2005; 7(3):169-76. PubMed ID: 16285409 [TBL] [Abstract][Full Text] [Related]
8. Exogenous cytokinin treatments of an Ni hyper-accumulator, Alyssum murale, grown in a serpentine soil: implications for phytoextraction. Cassina L; Tassi E; Morelli E; Giorgetti L; Remorini D; Chaney RL; Barbafieri M Int J Phytoremediation; 2011; 13 Suppl 1():90-101. PubMed ID: 22046753 [TBL] [Abstract][Full Text] [Related]
9. The effect of pH on metal accumulation in two Alyssum species. Kukier U; Peters CA; Chaney RL; Angle JS; Roseberg RJ J Environ Qual; 2004; 33(6):2090-102. PubMed ID: 15537931 [TBL] [Abstract][Full Text] [Related]
10. Cadmium phytoextraction potential of different Alyssum species. Barzanti R; Colzi I; Arnetoli M; Gallo A; Pignattelli S; Gabbrielli R; Gonnelli C J Hazard Mater; 2011 Nov; 196():66-72. PubMed ID: 21944702 [TBL] [Abstract][Full Text] [Related]
11. Phytoextraction potential of the nickel hyperaccumulators Leptoplax emarginata and Bornmuellera tymphaea. Chardot V; Massoura ST; Echevarria G; Reeves RD; Morel JL Int J Phytoremediation; 2005; 7(4):323-35. PubMed ID: 16463544 [TBL] [Abstract][Full Text] [Related]
12. An analytical deterministic model for simultaneous phytoremediation of Ni and Cd from contaminated soils. Davari M; Homaee M; Rahnemaie R Environ Sci Pollut Res Int; 2015 Mar; 22(6):4609-20. PubMed ID: 25567058 [TBL] [Abstract][Full Text] [Related]
13. Citric acid-assisted accumulation of Ni and other metals by Odontarrhena muralis: Implications for phytoextraction and metal foliar distribution assessed by μ-SXRF. do Nascimento CWA; Hesterberg D; Tappero R; Nicholas S; da Silva FBV Environ Pollut; 2020 May; 260():114025. PubMed ID: 32004964 [TBL] [Abstract][Full Text] [Related]
14. Bioaccumulation of thallium and other trace metals in Biscutella laevigata nearby a decommissioned zinc-lead mine (Northeastern Italian Alps). Pavoni E; Petranich E; Adami G; Baracchini E; Crosera M; Emili A; Lenaz D; Higueras P; Covelli S J Environ Manage; 2017 Jan; 186(Pt 2):214-224. PubMed ID: 27484741 [TBL] [Abstract][Full Text] [Related]
15. Is it worth hyperaccumulating Ni on non-serpentine soils? Decomposition dynamics of mixed-species litters containing hyperaccumulated Ni across serpentine and non-serpentine environments. Adamidis GC; Kazakou E; Aloupi M; Dimitrakopoulos PG Ann Bot; 2016 Jun; 117(7):1241-8. PubMed ID: 27091508 [TBL] [Abstract][Full Text] [Related]
16. A phytogeochemical study of the Trás-os-Montes region (NE Portugal): possible species for plant-based soil remediation technologies. Díez Lázaro J; Kidd PS; Monterroso Martínez C Sci Total Environ; 2006 Feb; 354(2-3):265-77. PubMed ID: 16399000 [TBL] [Abstract][Full Text] [Related]
17. Ni, Cr and Co Phytoremediations by Alyssum murale Grown in the Serpentine Soils Around Guleman Cr Deposits, Elazig Turkey. Konakci N; Kislioglu MS; Sasmaz A Bull Environ Contam Toxicol; 2023 May; 110(6):97. PubMed ID: 37219689 [TBL] [Abstract][Full Text] [Related]
18. Nickel solubilizing capacity and characterization of rhizobacteria isolated from hyperaccumulating and non-hyperaccumulating subspecies of Alyssum serpyllifolium. Becerra-Castro C; Prieto-Fernández A; Alvarez-Lopez V; Monterroso C; Cabello-Conejo MI; Acea MJ; Kidd PS Int J Phytoremediation; 2011; 13 Suppl 1():229-44. PubMed ID: 22046762 [TBL] [Abstract][Full Text] [Related]
19. Simultaneous hyperaccumulation of nickel, manganese, and calcium in Alyssum leaf trichomes. Broadhurst CL; Chaney RL; Angle JS; Maugel TK; Erbe EF; Murphy CA Environ Sci Technol; 2004 Nov; 38(21):5797-802. PubMed ID: 15575302 [TBL] [Abstract][Full Text] [Related]
20. Chrysotile dissolution in the rhizosphere of the nickel hyperaccumulator Leptoplax emarginata. Chardot-Jacques V; Calvaruso C; Simon B; Turpault MP; Echevarria G; Morel JL Environ Sci Technol; 2013 Mar; 47(6):2612-20. PubMed ID: 23373689 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]