BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 24630491)

  • 1. Blood substitutes: why haven't we been more successful?
    Alayash AI
    Trends Biotechnol; 2014 Apr; 32(4):177-85. PubMed ID: 24630491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of Toxicity and Modulation of Hemoglobin-based Oxygen Carriers.
    Alayash AI
    Shock; 2019 Oct; 52(1S Suppl 1):41-49. PubMed ID: 29112106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HBOC vasoactivity: interplay between nitric oxide scavenging and capacity to generate bioactive nitric oxide species.
    Cabrales P; Friedman JM
    Antioxid Redox Signal; 2013 Jun; 18(17):2284-97. PubMed ID: 23249305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of the oxidative reactivity of recombinant fetal and adult human hemoglobin: implications for the design of hemoglobin-based oxygen carriers.
    Simons M; Gretton S; Silkstone GGA; Rajagopal BS; Allen-Baume V; Syrett N; Shaik T; Leiva-Eriksson N; Ronda L; Mozzarelli A; Strader MB; Alayash AI; Reeder BJ; Cooper CE
    Biosci Rep; 2018 Aug; 38(4):. PubMed ID: 29802155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. All hemoglobin-based oxygen carriers are not created equally.
    Buehler PW; Alayash AI
    Biochim Biophys Acta; 2008 Oct; 1784(10):1378-81. PubMed ID: 18206989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering tyrosine residues into hemoglobin enhances heme reduction, decreases oxidative stress and increases vascular retention of a hemoglobin based blood substitute.
    Cooper CE; Silkstone GGA; Simons M; Rajagopal B; Syrett N; Shaik T; Gretton S; Welbourn E; Bülow L; Eriksson NL; Ronda L; Mozzarelli A; Eke A; Mathe D; Reeder BJ
    Free Radic Biol Med; 2019 Apr; 134():106-118. PubMed ID: 30594736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How Nitric Oxide Hindered the Search for Hemoglobin-Based Oxygen Carriers as Human Blood Substitutes.
    Samaja M; Malavalli A; Vandegriff KD
    Int J Mol Sci; 2023 Oct; 24(19):. PubMed ID: 37834350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of recombinant octameric hemoglobin with endothelial cells.
    Gaucher C; Domingues-Hamdi É; Prin-Mathieu C; Menu P; Baudin-Creuza V
    C R Biol; 2015 Feb; 338(2):95-102. PubMed ID: 25543885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Site-specific cross-linking of human and bovine hemoglobins differentially alters oxygen binding and redox side reactions producing rhombic heme and heme degradation.
    Nagababu E; Ramasamy S; Rifkind JM; Jia Y; Alayash AI
    Biochemistry; 2002 Jun; 41(23):7407-15. PubMed ID: 12044174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. First-generation blood substitutes: what have we learned? Biochemical and physiological perspectives.
    Alayash AI; D'Agnillo F; Buehler PW
    Expert Opin Biol Ther; 2007 May; 7(5):665-75. PubMed ID: 17477804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hemoglobin-based oxygen carriers: From mechanisms of toxicity and clearance to rational drug design.
    Buehler PW; D'Agnillo F; Schaer DJ
    Trends Mol Med; 2010 Oct; 16(10):447-57. PubMed ID: 20708968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comprehensive Biochemical and Biophysical Characterization of Hemoglobin-Based Oxygen Carrier Therapeutics: All HBOCs Are Not Created Equally.
    Meng F; Kassa T; Jana S; Wood F; Zhang X; Jia Y; D'Agnillo F; Alayash AI
    Bioconjug Chem; 2018 May; 29(5):1560-1575. PubMed ID: 29570272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering tyrosine electron transfer pathways decreases oxidative toxicity in hemoglobin: implications for blood substitute design.
    Silkstone GG; Silkstone RS; Wilson MT; Simons M; Bülow L; Kallberg K; Ratanasopa K; Ronda L; Mozzarelli A; Reeder BJ; Cooper CE
    Biochem J; 2016 Oct; 473(19):3371-83. PubMed ID: 27470146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Current Challenges in the Development of Acellular Hemoglobin Oxygen Carriers by Protein Engineering.
    Benitez Cardenas AS; Samuel PP; Olson JS
    Shock; 2019 Oct; 52(1S Suppl 1):28-40. PubMed ID: 29112633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation of NO and O2 transport facilitated by polymerized hemoglobin solutions in an arteriole that takes into account wall shear stress-induced NO production.
    Zhou Y; Cabrales P; Palmer AF
    Biophys Chem; 2012 Mar; 162():45-60. PubMed ID: 22285312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hemoglobin-based red blood cell substitutes and nitric oxide.
    Yu B; Bloch KD; Zapol WM
    Trends Cardiovasc Med; 2009 Apr; 19(3):103-7. PubMed ID: 19679268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hemoglobin-Based Blood Substitutes and the Treatment of Sickle Cell Disease: More Harm than Help?
    Alayash AI
    Biomolecules; 2017 Jan; 7(1):. PubMed ID: 28054978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Model of nitric oxide diffusion in an arteriole: impact of hemoglobin-based blood substitutes.
    Kavdia M; Tsoukias NM; Popel AS
    Am J Physiol Heart Circ Physiol; 2002 Jun; 282(6):H2245-53. PubMed ID: 12003834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tangential flow filtration facilitated fractionation and PEGylation of low and high-molecular weight polymerized hemoglobins and their biophysical properties.
    Gu X; Savla C; Palmer AF
    Biotechnol Bioeng; 2022 Jan; 119(1):176-186. PubMed ID: 34672363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preclinical In Vitro Safety Investigations of Submicron Sized Hemoglobin Based Oxygen Carrier HbMP-700.
    Kao I; Xiong Y; Steffen A; Smuda K; Zhao L; Georgieva R; Pruss A; Bäumler H
    Artif Organs; 2018 May; 42(5):549-559. PubMed ID: 29508415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.