These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 24631151)

  • 1. Adsorption characteristics of arsenic from micro-polluted water by an innovative coal-based mesoporous activated carbon.
    Li WG; Gong XJ; Wang K; Zhang XR; Fan WB
    Bioresour Technol; 2014 Aug; 165():166-73. PubMed ID: 24631151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arsenic adsorption by innovative iron/calcium in-situ-impregnated mesoporous activated carbons from low-temperature water and effects of the presence of humic acids.
    Gong XJ; Li YS; Dong YQ; Li WG
    Chemosphere; 2020 Jul; 250():126275. PubMed ID: 32113091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosorption of As(III) and As(V) from aqueous solution by macrofungus (Inonotus hispidus) biomass: equilibrium and kinetic studies.
    Sari A; Tuzen M
    J Hazard Mater; 2009 May; 164(2-3):1372-8. PubMed ID: 19022572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of arsenic from water using the adsorbent: New Zealand iron-sand.
    Panthi SR; Wareham DG
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(13):1533-8. PubMed ID: 21991930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption of arsenic on flyash.
    Nagarnaik PB; Bhole AG; Natarajan GS
    Indian J Environ Health; 2003 Jan; 45(1):1-4. PubMed ID: 14723275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of chromium (III) by using coal as adsorbent.
    Anwar J; Shafique U; Salman M; Waheed-uz-Zaman ; Anwar S; Anzano JM
    J Hazard Mater; 2009 Nov; 171(1-3):797-801. PubMed ID: 19592161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arsenic removal by modified activated carbons with iron hydro(oxide) nanoparticles.
    Vitela-Rodriguez AV; Rangel-Mendez JR
    J Environ Manage; 2013 Jan; 114():225-31. PubMed ID: 23146335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Liquid phase adsorption behavior of inulin-type fructan onto activated charcoal.
    Li K; Liu S; Xing R; Yu H; Qin Y; Li P
    Carbohydr Polym; 2015 May; 122():237-42. PubMed ID: 25817664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosorptive removal of arsenic from drinking water.
    Pandey PK; Choubey S; Verma Y; Pandey M; Chandrashekhar K
    Bioresour Technol; 2009 Jan; 100(2):634-7. PubMed ID: 18809315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Batch sorption dynamics and equilibrium for the removal of lead ions from aqueous phase using activated carbon developed from coffee residue activated with zinc chloride.
    Boudrahem F; Aissani-Benissad F; Aït-Amar H
    J Environ Manage; 2009 Jul; 90(10):3031-9. PubMed ID: 19447542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption of arsenic by activated carbon, calcium alginate and their composite beads.
    Hassan AF; Abdel-Mohsen AM; Elhadidy H
    Int J Biol Macromol; 2014 Jul; 68():125-30. PubMed ID: 24780567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A method for preparing ferric activated carbon composites adsorbents to remove arsenic from drinking water.
    Zhang QL; Lin YC; Chen X; Gao NY
    J Hazard Mater; 2007 Sep; 148(3):671-8. PubMed ID: 17434260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption of arsenic(V) by activated carbon prepared from oat hulls.
    Chuang CL; Fan M; Xu M; Brown RC; Sung S; Saha B; Huang CP
    Chemosphere; 2005 Oct; 61(4):478-83. PubMed ID: 16202801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of arsenic from water by supported nano zero-valent iron on activated carbon.
    Zhu H; Jia Y; Wu X; Wang H
    J Hazard Mater; 2009 Dec; 172(2-3):1591-6. PubMed ID: 19733972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced arsenic removal from water by hierarchically porous CeO₂-ZrO₂ nanospheres: role of surface- and structure-dependent properties.
    Xu W; Wang J; Wang L; Sheng G; Liu J; Yu H; Huang XJ
    J Hazard Mater; 2013 Sep; 260():498-507. PubMed ID: 23811372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mesoporous-activated carbon prepared from chitosan flakes via single-step sodium hydroxide activation for the adsorption of methylene blue.
    Marrakchi F; Ahmed MJ; Khanday WA; Asif M; Hameed BH
    Int J Biol Macromol; 2017 May; 98():233-239. PubMed ID: 28147233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption of anionic and cationic dyes on activated carbon from aqueous solutions: equilibrium and kinetics.
    Rodríguez A; García J; Ovejero G; Mestanza M
    J Hazard Mater; 2009 Dec; 172(2-3):1311-20. PubMed ID: 19726130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of activated carbon-based amino phosphonic acid chelating resin and its adsorption properties for Ce(III) removal.
    Chen T; Yan C; Wang Y; Tang C; Zhou S; Zhao Y; Ma R; Duan P
    Environ Technol; 2015; 36(17):2168-76. PubMed ID: 25730666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fe3O4 and MnO2 assembled on honeycomb briquette cinders (HBC) for arsenic removal from aqueous solutions.
    Zhu J; Baig SA; Sheng T; Lou Z; Wang Z; Xu X
    J Hazard Mater; 2015 Apr; 286():220-8. PubMed ID: 25585269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Equilibrium and kinetics studies on removal of arsenite by iron oxide coated activated alumina.
    Shugi K; Singh TS; Pant KK
    Indian J Environ Health; 2003 Apr; 45(2):151-4. PubMed ID: 15270348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.