BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 24631604)

  • 1. Transformation of the artificial sweetener acesulfame by UV light.
    Scheurer M; Schmutz B; Happel O; Brauch HJ; Wülser R; Storck FR
    Sci Total Environ; 2014 May; 481():425-32. PubMed ID: 24631604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photocatalytic transformation of acesulfame: Transformation products identification and embryotoxicity study.
    Li AJ; Schmitz OJ; Stephan S; Lenzen C; Yue PY; Li K; Li H; Leung KS
    Water Res; 2016 Feb; 89():68-75. PubMed ID: 26630044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transformation of acesulfame in water under natural sunlight: joint effect of photolysis and biodegradation.
    Gan Z; Sun H; Wang R; Hu H; Zhang P; Ren X
    Water Res; 2014 Nov; 64():113-122. PubMed ID: 25046375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of the photocatalytic transformation of acesulfame K in the presence of different TiO
    López-Muňoz MJ; Daniele A; Zorzi M; Medana C; Calza P
    Chemosphere; 2018 Feb; 193():151-159. PubMed ID: 29131973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance of ultraviolet/persulfate process in degrading artificial sweetener acesulfame.
    Xue H; Gao S; Li M; Wang Y; Liu B
    Environ Res; 2020 Sep; 188():109804. PubMed ID: 32798943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradation of artificial sweeteners via direct and indirect photochemical reactions.
    Perkola N; Vaalgamaa S; Jernberg J; Vähätalo AV
    Environ Sci Pollut Res Int; 2016 Jul; 23(13):13288-97. PubMed ID: 27023816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removing acesulfame with the peroxone process: Transformation products, pathways and toxicity.
    Chow CH; Leung KS
    Chemosphere; 2019 Apr; 221():647-655. PubMed ID: 30665093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photodegradation of quinestrol in waters and the transformation products by UV irradiation.
    Tang T; Qian K; Shi T; Wang F; Li P; Li J; Cao Y
    Chemosphere; 2012 Nov; 89(11):1419-25. PubMed ID: 22771000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluating the environmental impact of artificial sweeteners: a study of their distributions, photodegradation and toxicities.
    Sang Z; Jiang Y; Tsoi YK; Leung KS
    Water Res; 2014 Apr; 52():260-74. PubMed ID: 24289948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photolysis of model emerging contaminants in ultra-pure water: kinetics, by-products formation and degradation pathways.
    Benitez FJ; Acero JL; Real FJ; Roldan G; Rodriguez E
    Water Res; 2013 Feb; 47(2):870-80. PubMed ID: 23218246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidative transformation of artificial sweetener acesulfame by permanganate: Reaction kinetics, transformation products and pathways, and ecotoxicity.
    Yin K; Li F; Wang Y; He Q; Deng Y; Chen S; Liu C
    J Hazard Mater; 2017 May; 330():52-60. PubMed ID: 28208093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox mediators and irradiation improve fenton degradation of acesulfame.
    Law JC; Leung KS
    Chemosphere; 2019 Feb; 217():374-382. PubMed ID: 30419391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct large volume injection ultra-high performance liquid chromatography-tandem mass spectrometry determination of artificial sweeteners sucralose and acesulfame in well water.
    Wu M; Qian Y; Boyd JM; Hrudey SE; Le XC; Li XF
    J Chromatogr A; 2014 Sep; 1359():156-61. PubMed ID: 25085815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transformation of sulfaquinoxaline by chlorine and UV light in water: kinetics and by-product identification.
    Nassar R; Mokh S; Rifai A; Chamas F; Hoteit M; Al Iskandarani M
    Environ Sci Pollut Res Int; 2018 Dec; 25(35):34863-34872. PubMed ID: 29192403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural elucidation of main ozonation products of the artificial sweeteners cyclamate and acesulfame.
    Scheurer M; Godejohann M; Wick A; Happel O; Ternes TA; Brauch HJ; Ruck WK; Lange FT
    Environ Sci Pollut Res Int; 2012 May; 19(4):1107-18. PubMed ID: 21964549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photodegradation of Mefenamic Acid in Aqueous Media: Kinetics, Toxicity and Photolysis Products.
    Chen P; Wang FL; Yao K; Ma JS; Li FH; Lv WY; Liu GG
    Bull Environ Contam Toxicol; 2016 Feb; 96(2):203-9. PubMed ID: 26499325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degradation of the tricyclic antipsychotic drug chlorpromazine under environmental conditions, identification of its main aquatic biotic and abiotic transformation products by LC-MSn and their effects on environmental bacteria.
    Trautwein C; Kümmerer K
    J Chromatogr B Analyt Technol Biomed Life Sci; 2012 Mar; 889-890():24-38. PubMed ID: 22342447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Degradation of thiacloprid in aqueous solution by UV and UV/H2O2 treatments.
    Abramović BF; Banić ND; Sojić DV
    Chemosphere; 2010 Sep; 81(1):114-9. PubMed ID: 20692009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stability considerations of aspartame in the direct analysis of artificial sweeteners in water samples using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS).
    Berset JD; Ochsenbein N
    Chemosphere; 2012 Jul; 88(5):563-9. PubMed ID: 22503463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Approach for analytical characterization and toxicological assessment of ozonation products in drinking water on the example of acesulfame.
    Buchner EM; Happel O; Schmidt CK; Scheurer M; Schmutz B; Kramer M; Knauer M; Gartiser S; Hollert H
    Water Res; 2019 Apr; 153():357-368. PubMed ID: 30763901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.