BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 24631664)

  • 1. Strong dimerization of wild-type ErbB2/Neu transmembrane domain and the oncogenic Val664Glu mutant in mammalian plasma membranes.
    Placone J; He L; Del Piccolo N; Hristova K
    Biochim Biophys Acta; 2014 Sep; 1838(9):2326-30. PubMed ID: 24631664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of membrane protein interactions in plasma membrane derived vesicles with quantitative imaging Förster resonance energy transfer.
    Sarabipour S; Del Piccolo N; Hristova K
    Acc Chem Res; 2015 Aug; 48(8):2262-9. PubMed ID: 26244699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-throughput selection of transmembrane sequences that enhance receptor tyrosine kinase activation.
    He L; Hoffmann AR; Serrano C; Hristova K; Wimley WC
    J Mol Biol; 2011 Sep; 412(1):43-54. PubMed ID: 21767549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proline localized to the interaction interface can mediate self-association of transmembrane domains.
    Sal-Man N; Gerber D; Shai Y
    Biochim Biophys Acta; 2014 Sep; 1838(9):2313-8. PubMed ID: 24841754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measuring the energetics of membrane protein dimerization in mammalian membranes.
    Chen L; Novicky L; Merzlyakov M; Hristov T; Hristova K
    J Am Chem Soc; 2010 Mar; 132(10):3628-35. PubMed ID: 20158179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of the oncogenic V(664)E mutation on membrane insertion, structure, and sequence-dependent interactions of the Neu transmembrane domain in micelles and model membranes: an integrated biophysical and simulation study.
    Beevers AJ; Nash A; Salazar-Cancino M; Scott DJ; Notman R; Dixon AM
    Biochemistry; 2012 Mar; 51(12):2558-68. PubMed ID: 22385253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dimer interface of transmembrane domains for neu/erbB-2 receptor dimerization and transforming activation: a model revealed by molecular dynamics simulations.
    Sajot N; Genest M
    J Biomol Struct Dyn; 2001 Aug; 19(1):15-31. PubMed ID: 11565846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specific inhibition of a pathogenic receptor tyrosine kinase by its transmembrane domain.
    He L; Shobnam N; Hristova K
    Biochim Biophys Acta; 2011 Jan; 1808(1):253-9. PubMed ID: 20713021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transmembrane helix orientation influences membrane binding of the intracellular juxtamembrane domain in Neu receptor peptides.
    Matsushita C; Tamagaki H; Miyazawa Y; Aimoto S; Smith SO; Sato T
    Proc Natl Acad Sci U S A; 2013 Jan; 110(5):1646-51. PubMed ID: 23319611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pathogenic activation of receptor tyrosine kinases in mammalian membranes.
    He L; Hristova K
    J Mol Biol; 2008 Dec; 384(5):1130-42. PubMed ID: 18976668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dimerization of Neu/Erb2 transmembrane domain is controlled by membrane curvature.
    Khemtémourian L; Buchoux S; Aussenac F; Dufourc EJ
    Eur Biophys J; 2007 Feb; 36(2):107-12. PubMed ID: 17115152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of hydrophilic substitutions and anionic lipids upon the transverse positioning of the transmembrane helix of the ErbB2 (neu) protein incorporated into model membrane vesicles.
    Shahidullah K; Krishnakumar SS; London E
    J Mol Biol; 2010 Feb; 396(1):209-20. PubMed ID: 19931543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequence-dependent oligomerization of the Neu transmembrane domain suggests inhibition of "conformational switching" by an oncogenic mutant.
    Beevers AJ; Damianoglou A; Oates J; Rodger A; Dixon AM
    Biochemistry; 2010 Apr; 49(13):2811-20. PubMed ID: 20180588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies of receptor tyrosine kinase transmembrane domain interactions: the EmEx-FRET method.
    Merzlyakov M; Chen L; Hristova K
    J Membr Biol; 2007 Feb; 215(2-3):93-103. PubMed ID: 17565424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transmembrane helix packing of ErbB/Neu receptor in membrane environment: a molecular dynamics study.
    Aller P; Garnier N; Genest M
    J Biomol Struct Dyn; 2006 Dec; 24(3):209-28. PubMed ID: 17054379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The FRET signatures of noninteracting proteins in membranes: simulations and experiments.
    King C; Sarabipour S; Byrne P; Leahy DJ; Hristova K
    Biophys J; 2014 Mar; 106(6):1309-17. PubMed ID: 24655506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The single transmembrane domains of ErbB receptors self-associate in cell membranes.
    Mendrola JM; Berger MB; King MC; Lemmon MA
    J Biol Chem; 2002 Feb; 277(7):4704-12. PubMed ID: 11741943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and forster resonance energy transfer suggest weak interactions between fibroblast growth factor receptor 3 (FGFR3) transmembrane domains in the absence of extracellular domains and ligands.
    Li E; You M; Hristova K
    Biochemistry; 2005 Jan; 44(1):352-60. PubMed ID: 15628877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of Neu (ErbB-2) mediated by disulfide bond-induced dimerization reveals a receptor tyrosine kinase dimer interface.
    Burke CL; Stern DF
    Mol Cell Biol; 1998 Sep; 18(9):5371-9. PubMed ID: 9710621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of Transmembrane Domain Interactions in Neu Receptor Tyrosine Kinase by Membrane Fluidity and Cholesterol.
    Hasan M; Patel D; Ellis N; Brown SP; Lewandowski JR; Dixon AM
    J Membr Biol; 2019 Oct; 252(4-5):357-369. PubMed ID: 31222471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.