BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 24632304)

  • 1. Combining multidimensional genomic measurements for predicting cancer prognosis: observations from TCGA.
    Zhao Q; Shi X; Xie Y; Huang J; Shia B; Ma S
    Brief Bioinform; 2015 Mar; 16(2):291-303. PubMed ID: 24632304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-omics facilitated variable selection in Cox-regression model for cancer prognosis prediction.
    Liu C; Wang X; Genchev GZ; Lu H
    Methods; 2017 Jul; 124():100-107. PubMed ID: 28627406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting censored survival data based on the interactions between meta-dimensional omics data in breast cancer.
    Kim D; Li R; Dudek SM; Ritchie MD
    J Biomed Inform; 2015 Aug; 56():220-8. PubMed ID: 26048077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of prognostic gene signatures of glioblastoma: a study based on TCGA data analysis.
    Kim YW; Koul D; Kim SH; Lucio-Eterovic AK; Freire PR; Yao J; Wang J; Almeida JS; Aldape K; Yung WK
    Neuro Oncol; 2013 Jul; 15(7):829-39. PubMed ID: 23502430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bayesian variable selection with graphical structure learning: Applications in integrative genomics.
    Kundu S; Cheng Y; Shin M; Manyam G; Mallick BK; Baladandayuthapani V
    PLoS One; 2018; 13(7):e0195070. PubMed ID: 30059495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrative Analysis of Multi-Omics Data Based on Blockwise Sparse Principal Components.
    Park M; Kim D; Moon K; Park T
    Int J Mol Sci; 2020 Nov; 21(21):. PubMed ID: 33147797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectrum of EGFR aberrations and potential clinical implications: insights from integrative pan-cancer analysis.
    Liu H; Zhang B; Sun Z
    Cancer Commun (Lond); 2020 Jan; 40(1):43-59. PubMed ID: 32067422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systematic identification, development, and validation of prognostic biomarkers involving the tumor-immune microenvironment for glioblastoma.
    Zhao B; Wang Y; Wang Y; Chen W; Liu PH; Kong Z; Dai C; Wang Y; Ma W
    J Cell Physiol; 2021 Jan; 236(1):507-522. PubMed ID: 32572951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of 17 mRNAs and a miRNA as an integrated prognostic signature for lung squamous cell carcinoma.
    Zhang J; Bing Z; Yan P; Tian J; Shi X; Wang Y; Yang K
    J Gene Med; 2019 Aug; 21(8):e3105. PubMed ID: 31215090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Survival-associated N
    Qu J; Wang L; Jiang M; Wei Z; Fu G; Zhang X
    BMC Cancer; 2021 Nov; 21(1):1265. PubMed ID: 34814861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated genomic analysis for prediction of survival for patients with liver cancer using The Cancer Genome Atlas.
    Song YZ; Li X; Li W; Wang Z; Li K; Xie FL; Zhang F
    World J Gastroenterol; 2018 Jul; 24(28):3145-3154. PubMed ID: 30065560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of genomic and transcriptomic variations as prognostic signature for lung adenocarcinoma.
    Zengin T; Önal-Süzek T
    BMC Bioinformatics; 2020 Sep; 21(Suppl 14):368. PubMed ID: 32998690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct signatures of codon and codon pair usage in 32 primary tumor types in the novel database CancerCoCoPUTs for cancer-specific codon usage.
    Meyer D; Kames J; Bar H; Komar AA; Alexaki A; Ibla J; Hunt RC; Santana-Quintero LV; Golikov A; DiCuccio M; Kimchi-Sarfaty C
    Genome Med; 2021 Jul; 13(1):122. PubMed ID: 34321100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The panoramic picture of pepsinogen gene family with pan-cancer.
    Shen S; Li H; Liu J; Sun L; Yuan Y
    Cancer Med; 2020 Dec; 9(23):9064-9080. PubMed ID: 33067881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pan-Cancer Analysis of PARP1 Alterations as Biomarkers in the Prediction of Immunotherapeutic Effects and the Association of Its Expression Levels and Immunotherapy Signatures.
    Zhang X; Wang Y; A G; Qu C; Chen J
    Front Immunol; 2021; 12():721030. PubMed ID: 34531868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specific Lung Squamous Cell Carcinoma Prognosis-Subtype Distinctions Based on DNA Methylation Patterns.
    Huang G; Zhang J; Gong L; Liu D; Wang X; Chen Y; Guo S
    Med Sci Monit; 2021 Mar; 27():e929524. PubMed ID: 33661858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Group Lasso Regularized Deep Learning for Cancer Prognosis from Multi-Omics and Clinical Features.
    Xie G; Dong C; Kong Y; Zhong JF; Li M; Wang K
    Genes (Basel); 2019 Mar; 10(3):. PubMed ID: 30901858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA methylation profiling to predict recurrence risk in stage Ι lung adenocarcinoma: Development and validation of a nomogram to clinical management.
    Ma X; Cheng J; Zhao P; Li L; Tao K; Chen H
    J Cell Mol Med; 2020 Jul; 24(13):7576-7589. PubMed ID: 32530136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel 12-gene signature as independent prognostic model in stage IA and IB lung squamous cell carcinoma patients.
    Wang K; Li Y; Wang J; Chen R; Li J
    Clin Transl Oncol; 2021 Nov; 23(11):2368-2381. PubMed ID: 34028782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An integrative characterization of recurrent molecular aberrations in glioblastoma genomes.
    Sintupisut N; Liu PL; Yeang CH
    Nucleic Acids Res; 2013 Oct; 41(19):8803-21. PubMed ID: 23907387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.