BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

426 related articles for article (PubMed ID: 24632312)

  • 1. Identification and expression of aryl hydrocarbon receptors (AhR1 and AhR2) provide insight in an evolutionary context regarding sensitivity of white sturgeon (Acipenser transmontanus) to dioxin-like compounds.
    Doering JA; Wiseman S; Beitel SC; Giesy JP; Hecker M
    Aquat Toxicol; 2014 May; 150():27-35. PubMed ID: 24632312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functionality of aryl hydrocarbon receptors (AhR1 and AhR2) of white sturgeon (Acipenser transmontanus) and implications for the risk assessment of dioxin-like compounds.
    Doering JA; Farmahin R; Wiseman S; Kennedy SW; Giesy JP; Hecker M
    Environ Sci Technol; 2014 Jul; 48(14):8219-26. PubMed ID: 24950391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differences in activation of aryl hydrocarbon receptors of white sturgeon relative to lake sturgeon are predicted by identities of key amino acids in the ligand binding domain.
    Doering JA; Farmahin R; Wiseman S; Beitel SC; Kennedy SW; Giesy JP; Hecker M
    Environ Sci Technol; 2015 Apr; 49(7):4681-9. PubMed ID: 25761200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tissue specificity of aryl hydrocarbon receptor (AhR) mediated responses and relative sensitivity of white sturgeon (Acipenser transmontanus) to an AhR agonist.
    Doering JA; Wiseman S; Beitel SC; Tendler BJ; Giesy JP; Hecker M
    Aquat Toxicol; 2012 Jun; 114-115():125-33. PubMed ID: 22446824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of AHR1 and its functional activity in Atlantic sturgeon and shortnose sturgeon.
    Roy NK; DellaTorre M; Candelmo A; Chambers RC; Habeck E; Wirgin I
    Aquat Toxicol; 2018 Dec; 205():25-35. PubMed ID: 30312899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of AHR2 and CYP1A expression in Atlantic sturgeon and shortnose sturgeon treated with coplanar PCBs and TCDD.
    Roy NK; Candelmo A; DellaTorre M; Chambers RC; Nádas A; Wirgin I
    Aquat Toxicol; 2018 Apr; 197():19-31. PubMed ID: 29427830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amino acid sequence of the ligand-binding domain of the aryl hydrocarbon receptor 1 predicts sensitivity of wild birds to effects of dioxin-like compounds.
    Farmahin R; Manning GE; Crump D; Wu D; Mundy LJ; Jones SP; Hahn ME; Karchner SI; Giesy JP; Bursian SJ; Zwiernik MJ; Fredricks TB; Kennedy SW
    Toxicol Sci; 2013 Jan; 131(1):139-52. PubMed ID: 22923492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aryl hydrocarbon receptor nuclear translocators (ARNT1, ARNT2, and ARNT3) of white sturgeon (Acipenser transmontanus): Sequences, tissue-specific expressions, and response to β-naphthoflavone.
    Doering JA; Beitel SC; Patterson S; Eisner BK; Giesy JP; Hecker M; Wiseman S
    Comp Biochem Physiol C Toxicol Pharmacol; 2020 May; 231():108726. PubMed ID: 32081761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional characterization and evolutionary history of two aryl hydrocarbon receptor isoforms (AhR1 and AhR2) from avian species.
    Yasui T; Kim EY; Iwata H; Franks DG; Karchner SI; Hahn ME; Tanabe S
    Toxicol Sci; 2007 Sep; 99(1):101-17. PubMed ID: 17556759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro transactivation potencies of black-footed albatross (Phoebastria nigripes) AHR1 and AHR2 by dioxins to predict CYP1A expression in the wild population.
    Mol TL; Kim EY; Ishibashi H; Iwata H
    Environ Sci Technol; 2012 Jan; 46(1):525-33. PubMed ID: 22074031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of aryl hydrocarbon receptor 2 in aquatic birds; cDNA cloning of AHR1 and AHR2 and characteristics of their amino acid sequences.
    Yasui T; Kim EY; Iwata H; Tanabe S
    Mar Environ Res; 2004; 58(2-5):113-8. PubMed ID: 15178022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and response to metals of metallothionein in two ancient fishes: white sturgeon (Acipenser transmontanus) and lake sturgeon (Acipenser fulvescens).
    Doering JA; Beitel SC; Eisner BK; Heide T; Hollert H; Giesy JP; Hecker M; Wiseman SB
    Comp Biochem Physiol C Toxicol Pharmacol; 2015 May; 171():41-8. PubMed ID: 25795035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequence and in vitro function of chicken, ring-necked pheasant, and Japanese quail AHR1 predict in vivo sensitivity to dioxins.
    Farmahin R; Wu D; Crump D; Hervé JC; Jones SP; Hahn ME; Karchner SI; Giesy JP; Bursian SJ; Zwiernik MJ; Kennedy SW
    Environ Sci Technol; 2012 Mar; 46(5):2967-75. PubMed ID: 22296185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting the sensitivity of fishes to dioxin-like compounds: possible role of the aryl hydrocarbon receptor (AhR) ligand binding domain.
    Doering JA; Giesy JP; Wiseman S; Hecker M
    Environ Sci Pollut Res Int; 2013 Mar; 20(3):1219-24. PubMed ID: 23054770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of in ovo exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin on hepatic AHR/ARNT-CYP1A signaling pathways in common cormorants (Phalacrocorax carbo).
    Iwata H; Nagahama N; Kim EY; Watanabe MX; Sudo A
    Comp Biochem Physiol C Toxicol Pharmacol; 2010 Aug; 152(2):224-31. PubMed ID: 20417310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and functional characterization of two highly divergent aryl hydrocarbon receptors (AHR1 and AHR2) in the teleost Fundulus heteroclitus. Evidence for a novel subfamily of ligand-binding basic helix loop helix-Per-ARNT-Sim (bHLH-PAS) factors.
    Karchner SI; Powell WH; Hahn ME
    J Biol Chem; 1999 Nov; 274(47):33814-24. PubMed ID: 10559277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In silico analysis of the interaction of avian aryl hydrocarbon receptors and dioxins to decipher isoform-, ligand-, and species-specific activations.
    Hirano M; Hwang JH; Park HJ; Bak SM; Iwata H; Kim EY
    Environ Sci Technol; 2015 Mar; 49(6):3795-804. PubMed ID: 25692546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulatory interactions among three members of the vertebrate aryl hydrocarbon receptor family: AHR repressor, AHR1, and AHR2.
    Karchner SI; Franks DG; Powell WH; Hahn ME
    J Biol Chem; 2002 Mar; 277(9):6949-59. PubMed ID: 11742002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitivity of avian species to the aryl hydrocarbon receptor ligand 6-formylindolo [3,2-b] carbazole (FICZ).
    Farmahin R; Crump D; Kennedy SW
    Chem Biol Interact; 2014 Sep; 221():61-9. PubMed ID: 25093689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potencies of red seabream AHR1- and AHR2-mediated transactivation by dioxins: implication of both AHRs in dioxin toxicity.
    Bak SM; Iida M; Hirano M; Iwata H; Kim EY
    Environ Sci Technol; 2013 Mar; 47(6):2877-85. PubMed ID: 23402477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.