These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 24632446)

  • 1. Graphical analysis of evolutionary trade-off in sylvatic Trypanosoma cruzi transmission modes.
    Kribs-Zaleta CM
    J Theor Biol; 2014 Jul; 353():34-43. PubMed ID: 24632446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of the ratio of vector and host densities in the evolution of transmission modes in vector-borne diseases. The example of sylvatic Trypanosoma cruzi.
    Pelosse P; Kribs-Zaleta CM
    J Theor Biol; 2012 Nov; 312():133-42. PubMed ID: 22892441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of adaptations in two-strain competition for sylvatic Trypanosoma cruzi transmission.
    Kribs-Zaleta CM; Mubayi A
    J Biol Dyn; 2012; 6():813-35. PubMed ID: 22877420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alternative transmission modes for Trypanosoma cruzi.
    Kribs-Zaleta CM
    Math Biosci Eng; 2010 Jul; 7(3):657-73. PubMed ID: 20578791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimating contact process saturation in sylvatic transmission of Trypanosoma cruzi in the United States.
    Kribs-Zaleta C
    PLoS Negl Trop Dis; 2010 Apr; 4(4):e656. PubMed ID: 20436914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A metapopulation model for sylvatic T. cruzi transmission with vector migration.
    Crawford B; Kribs-Zaleta C
    Math Biosci Eng; 2014 Jun; 11(3):471-509. PubMed ID: 24506549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Host switching vs. host sharing in overlapping sylvatic Trypanosoma cruzi transmission cycles.
    Kribs CM; Mitchell C
    J Biol Dyn; 2015; 9():247-77. PubMed ID: 26364539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling the influence of host community composition in a sylvatic Trypanosoma cruzi system.
    Erazo D; Cordovez J; Cabrera C; Calzada JE; Saldaña A; Gottdenker NL
    Parasitology; 2017 Dec; 144(14):1881-1889. PubMed ID: 28701240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Agent-based mathematical modeling as a tool for estimating Trypanosoma cruzi vector-host contact rates.
    Yong KE; Mubayi A; Kribs CM
    Acta Trop; 2015 Nov; 151():21-31. PubMed ID: 26215127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trypanosoma cruzi TcI and TcII transmission among wild carnivores, small mammals and dogs in a conservation unit and surrounding areas, Brazil.
    Rocha FL; Roque AL; Arrais RC; Santos JP; Lima Vdos S; Xavier SC; Cordeir-Estrela P; D'Andrea PS; Jansen AM
    Parasitology; 2013 Feb; 140(2):160-70. PubMed ID: 23062278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variables that modulate the spatial distribution of Trypanosoma cruzi and Trypanosoma evansi in the Brazilian Pantanal.
    Herrera HM; Rademaker V; Abreu UG; D'Andrea PS; Jansen AM
    Acta Trop; 2007 Apr; 102(1):55-62. PubMed ID: 17451633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sylvatic Transmission of Trypanosoma cruzi Among Domestic and Wildlife Reservoirs in Texas, USA: A Review of the Historical Literature.
    Gunter SM; Brown EL; Gorchakov R; Murray KO; Garcia MN
    Zoonoses Public Health; 2017 Aug; 64(5):313-327. PubMed ID: 27911051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Infection and invasion mechanisms of Trypanosoma cruzi in the congenital transmission of Chagas' disease: a proposal.
    Kemmerling U; Bosco C; Galanti N
    Biol Res; 2010; 43(3):307-16. PubMed ID: 21249302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Invasion speed in cellular automaton models for T. cruzi vector migration.
    Crawford BA; Kribs-Zaleta CM; Ambartsoumian G
    Bull Math Biol; 2013 Jul; 75(7):1051-81. PubMed ID: 23775044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Factors and mechanisms involved in the transmission and development of congenital infection with Trypanosoma cruzi].
    Carlier Y
    Rev Soc Bras Med Trop; 2005; 38 Suppl 2():105-7. PubMed ID: 16482827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High prevalence of congenital Trypanosoma cruzi infection and family clustering in Salta, Argentina.
    Sánchez Negrette O; Mora MC; Basombrío MA
    Pediatrics; 2005 Jun; 115(6):e668-72. PubMed ID: 15930194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trypanosoma cruzi: Biological characterization of lineages I and II supports the predominance of lineage I in Colombia.
    Mejía-Jaramillo AM; Peña VH; Triana-Chávez O
    Exp Parasitol; 2009 Jan; 121(1):83-91. PubMed ID: 18950627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epidemiological modeling of Trypanosoma cruzi: Low stercorarian transmission and failure of host adaptive immunity explain the frequency of mixed infections in humans.
    Tomasini N; Ragone PG; Gourbière S; Aparicio JP; Diosque P
    PLoS Comput Biol; 2017 May; 13(5):e1005532. PubMed ID: 28481887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oral transmission of Chagas disease.
    Shikanai-Yasuda MA; Carvalho NB
    Clin Infect Dis; 2012 Mar; 54(6):845-52. PubMed ID: 22238161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trypanosoma cruzi among wild and domestic mammals in different areas of the Abaetetuba municipality (Pará State, Brazil), an endemic Chagas disease transmission area.
    Roque AL; Xavier SC; Gerhardt M; Silva MF; Lima VS; D'Andrea PS; Jansen AM
    Vet Parasitol; 2013 Mar; 193(1-3):71-7. PubMed ID: 23261089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.