BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 24632495)

  • 1. Effects of acute hypoxia on cerebrovascular responses to carbon dioxide.
    Ogoh S; Nakahara H; Ueda S; Okazaki K; Shibasaki M; Subudhi AW; Miyamoto T
    Exp Physiol; 2014 Jun; 99(6):849-58. PubMed ID: 24632495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of acute hypoxia on blood flow in vertebral and internal carotid arteries.
    Ogoh S; Sato K; Nakahara H; Okazaki K; Subudhi AW; Miyamoto T
    Exp Physiol; 2013 Mar; 98(3):692-8. PubMed ID: 23143991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acute exposure to normobaric mild hypoxia alters dynamic relationships between blood pressure and cerebral blood flow at very low frequency.
    Iwasaki K; Ogawa Y; Shibata S; Aoki K
    J Cereb Blood Flow Metab; 2007 Apr; 27(4):776-84. PubMed ID: 16926845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hyperthermia modulates regional differences in cerebral blood flow to changes in CO2.
    Ogoh S; Sato K; Okazaki K; Miyamoto T; Hirasawa A; Shibasaki M
    J Appl Physiol (1985); 2014 Jul; 117(1):46-52. PubMed ID: 24790021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measuring the human ventilatory and cerebral blood flow response to CO2: a technical consideration for the end-tidal-to-arterial gas gradient.
    Tymko MM; Hoiland RL; Kuca T; Boulet LM; Tremblay JC; Pinske BK; Williams AM; Foster GE
    J Appl Physiol (1985); 2016 Jan; 120(2):282-96. PubMed ID: 26542522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic cerebral autoregulation during and following acute hypoxia: role of carbon dioxide.
    Querido JS; Ainslie PN; Foster GE; Henderson WR; Halliwill JR; Ayas NT; Sheel AW
    J Appl Physiol (1985); 2013 May; 114(9):1183-90. PubMed ID: 23471947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human cerebrovascular response to oxygen and carbon dioxide as determined by internal carotid artery duplex scanning.
    Fortune JB; Bock D; Kupinski AM; Stratton HH; Shah DM; Feustel PJ
    J Trauma; 1992 May; 32(5):618-27; discussion 627-8. PubMed ID: 1588651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential effects of acute hypoxia and high altitude on cerebral blood flow velocity and dynamic cerebral autoregulation: alterations with hyperoxia.
    Ainslie PN; Ogoh S; Burgess K; Celi L; McGrattan K; Peebles K; Murrell C; Subedi P; Burgess KR
    J Appl Physiol (1985); 2008 Feb; 104(2):490-8. PubMed ID: 18048592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cerebrovascular response to the cold pressor test - the critical role of carbon dioxide.
    Tymko MM; Kerstens TP; Wildfong KW; Ainslie PN
    Exp Physiol; 2017 Dec; 102(12):1647-1660. PubMed ID: 28925529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of muscle metaboreceptor stimulation on middle cerebral artery blood velocity in humans.
    Braz ID; Scott C; Simpson LL; Springham EL; Tan BW; Balanos GM; Fisher JP
    Exp Physiol; 2014 Nov; 99(11):1478-87. PubMed ID: 25217497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The postural reduction in middle cerebral artery blood velocity is not explained by PaCO2.
    Immink RV; Secher NH; Roos CM; Pott F; Madsen PL; van Lieshout JJ
    Eur J Appl Physiol; 2006 Mar; 96(5):609-14. PubMed ID: 16470413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of oxygen on dynamic cerebral autoregulation: critical role of hypocapnia.
    Ogoh S; Nakahara H; Ainslie PN; Miyamoto T
    J Appl Physiol (1985); 2010 Mar; 108(3):538-43. PubMed ID: 20056845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cerebrovascular response to acute hypocapnic and eucapnic hypoxia in normal man.
    Shapiro W; Wasserman AJ; Baker JP; Patterson JL
    J Clin Invest; 1970 Dec; 49(12):2362-8. PubMed ID: 5480859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitrous oxide increases normocapnic cerebral blood flow velocity but does not affect the dynamic cerebrovascular response to step changes in end-tidal P(CO2) in humans.
    Aono M; Sato J; Nishino T
    Anesth Analg; 1999 Sep; 89(3):684-9. PubMed ID: 10475306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic cerebral autoregulation during cognitive task: effect of hypoxia.
    Ogoh S; Nakata H; Miyamoto T; Bailey DM; Shibasaki M
    J Appl Physiol (1985); 2018 Jun; 124(6):1413-1419. PubMed ID: 29420157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decreased steady-state cerebral blood flow velocity and altered dynamic cerebral autoregulation during 5-h sustained 15% O2 hypoxia.
    Nishimura N; Iwasaki K; Ogawa Y; Aoki K
    J Appl Physiol (1985); 2010 May; 108(5):1154-61. PubMed ID: 20224002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cerebrovascular Response to CO2 Following 10 Days of Intermittent Hypoxia in Humans.
    Querido JS; Welch JF; Ayas NT; Sheel AW
    Aerosp Med Hum Perform; 2015 Sep; 86(9):782-6. PubMed ID: 26388084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ventilatory, cerebrovascular, and cardiovascular interactions in acute hypoxia: regulation by carbon dioxide.
    Ainslie PN; Poulin MJ
    J Appl Physiol (1985); 2004 Jul; 97(1):149-59. PubMed ID: 15004003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endotoxemia reduces cerebral perfusion but enhances dynamic cerebrovascular autoregulation at reduced arterial carbon dioxide tension.
    Brassard P; Kim YS; van Lieshout J; Secher NH; Rosenmeier JB
    Crit Care Med; 2012 Jun; 40(6):1873-8. PubMed ID: 22610190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Steady-state tilt has no effect on cerebrovascular CO2 reactivity in anterior and posterior cerebral circulations.
    Tymko MM; Skow RJ; MacKay CM; Day TA
    Exp Physiol; 2015 Jul; 100(7):839-51. PubMed ID: 25966669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.