These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 2463274)

  • 41. Organization of ascending pathways to the forelimb area of the dorsal accessory olive in the cat.
    McCurdy ML; Houk JC; Gibson AR
    J Comp Neurol; 1998 Mar; 392(1):115-33. PubMed ID: 9482236
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ultrastructural analysis of catecholaminergic innervation in weaver and normal mouse cerebellar cortices.
    Abbott LC; Sotelo C
    J Comp Neurol; 2000 Oct; 426(2):316-29. PubMed ID: 10982471
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Purkinje cell dendrites in staggerer<-->wild type mouse chimeras lack the aberrant morphologies found in lurcher<-->wild type chimeras.
    Soha JM; Herrup K
    J Comp Neurol; 1993 May; 331(4):540-50. PubMed ID: 8509510
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An HRP study of hypothalamo-cerebellar and cerebello-hypothalamic connections in squirrel monkey (Saimiri sciureus).
    Haines DE; Dietrichs E
    J Comp Neurol; 1984 Nov; 229(4):559-75. PubMed ID: 6209312
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Central distribution of cervical primary afferents in the rat, with emphasis on proprioceptive projections to vestibular, perihypoglossal, and upper thoracic spinal nuclei.
    Neuhuber WL; Zenker W
    J Comp Neurol; 1989 Feb; 280(2):231-53. PubMed ID: 2466876
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The location of cerebellar-projecting neurons within the lumbosacral spinal cord in the cat. An anatomical study with HRP and retrograde chromatolysis.
    Grant G; Wiksten B; Berkley KJ; Aldskogius H
    J Comp Neurol; 1982 Feb; 204(4):336-48. PubMed ID: 7061737
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cerebellar benzodiazepine receptors: cellular localization and consequences of neurological mutations in mice.
    Rotter A; Frostholm A
    Brain Res; 1988 Mar; 444(1):133-46. PubMed ID: 2834020
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The terminal distribution pattern of spinocerebellar fibers. An anterograde labelling study in the posthatching chick.
    Okado N; Ito R; Homma S
    Anat Embryol (Berl); 1987; 176(2):175-82. PubMed ID: 2441627
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The early development of major projections from caudal levels of the spinal cord to the brainstem and cerebellum in the gray short-tailed Brazilian opossum, Monodelphis domestica.
    Qin YQ; Wang XM; Martin GF
    Brain Res Dev Brain Res; 1993 Sep; 75(1):75-90. PubMed ID: 7693371
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Axon collaterals of spinocerebellar fibers terminate in the parabrachial nucleus of the rat.
    Kitamura T; Yamada J; Sato H
    Neurosci Lett; 1989 Apr; 99(1-2):24-9. PubMed ID: 2473428
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mossy fiber and Purkinje cell axon collateral arborization patterns in normal and X-irradiated rat cerebellum: a light microscopic study using horseradish peroxidase fiber filling techniques.
    Yeh HH; Lin CS; Woodward DJ
    Brain Res; 1981 Aug; 254(1):169-75. PubMed ID: 7272769
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The olivocerebellar projection in 'lurcher' mutant mice.
    Heckroth JA; Eisenman LM
    Neurosci Lett; 1988 Feb; 85(2):199-204. PubMed ID: 2453816
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Parallin, a cerebellar granule cell protein the expression of which is developmentally regulated by Purkinje cells: evidence from mutant mice.
    Smith AM; Mullen RJ
    Brain Res Dev Brain Res; 1997 Dec; 104(1-2):79-89. PubMed ID: 9466710
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Quantitative analysis of the recurrent collaterals derived from Purkinje cells in zone x of the cat's vermis.
    Bishop GA
    J Comp Neurol; 1988 Aug; 274(1):17-31. PubMed ID: 2458395
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Architectonic and hodological organization of the cerebellum in reeler mutant mice.
    Goffinet AM; So KF; Yamamoto M; Edwards M; Caviness VS
    Brain Res; 1984 Nov; 318(2):263-76. PubMed ID: 6498501
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Partial reconstruction of the adult Lurcher cerebellar circuitry by neural grafting.
    Dumesnil-Bousez N; Sotelo C
    Neuroscience; 1993 Jul; 55(1):1-21. PubMed ID: 8350981
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Role of staggerer gene in determining cell number in cerebellar cortex. II. Granule cell death and persistence of the external granule cell layer in young mouse chimeras.
    Sonmez E; Herrup K
    Brain Res; 1984 Feb; 314(2):271-83. PubMed ID: 6704753
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Granule cell as a site of gene action in the weaver mouse cerebellum: evidence from heterozygous mutant chimeras.
    Goldowitz D; Mullen RJ
    J Neurosci; 1982 Oct; 2(10):1474-85. PubMed ID: 7119868
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mossy Fibers Terminate Directly Within Purkinje Cell Zones During Mouse Development.
    Sillitoe RV
    Cerebellum; 2016 Feb; 15(1):14-17. PubMed ID: 26255945
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Defects in specific associations between astroglia and neurons occur in microcultures of weaver mouse cerebellar cells.
    Hatten ME; Liem RK; Mason CA
    J Neurosci; 1984 Apr; 4(4):1163-72. PubMed ID: 6716130
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.