These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 24632885)

  • 1. Bulk mixed ion electron conduction in amorphous gallium oxide causes memristive behaviour.
    Aoki Y; Wiemann C; Feyer V; Kim HS; Schneider CM; Ill-Yoo H; Martin M
    Nat Commun; 2014 Mar; 5():3473. PubMed ID: 24632885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupled ionic and electronic transport model of thin-film semiconductor memristive behavior.
    Strukov DB; Borghetti JL; Williams RS
    Small; 2009 May; 5(9):1058-63. PubMed ID: 19226597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bipolar Resistive Switching in Junctions of Gallium Oxide and p-type Silicon.
    Almadhoun MN; Speckbacher M; Olsen BC; Luber EJ; Sayed SY; Tornow M; Buriak JM
    Nano Lett; 2021 Mar; 21(6):2666-2674. PubMed ID: 33689381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transition between bipolar and abnormal bipolar resistive switching in amorphous oxides with a mobility edge.
    Ader C; Falkenstein A; Martin M
    Sci Rep; 2021 Jul; 11(1):14384. PubMed ID: 34257338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analog memristors based on thickening/thinning of Ag nanofilaments in amorphous manganite thin films.
    Liu D; Cheng H; Zhu X; Wang G; Wang N
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):11258-64. PubMed ID: 24083960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-temperature operation of gallium oxide memristors up to 600 K.
    Sato K; Hayashi Y; Masaoka N; Tohei T; Sakai A
    Sci Rep; 2023 Jan; 13(1):1261. PubMed ID: 36717634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bipolar resistive switching behavior of an amorphous Ge₂Sb₂Te₅ thin films with a Te layer.
    Yoo S; Eom T; Gwon T; Hwang CS
    Nanoscale; 2015 Apr; 7(14):6340-7. PubMed ID: 25785363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering electrodeposited ZnO films and their memristive switching performance.
    Zoolfakar AS; Ab Kadir R; Rani RA; Balendhran S; Liu X; Kats E; Bhargava SK; Bhaskaran M; Sriram S; Zhuiykov S; O'Mullane AP; Kalantar-Zadeh K
    Phys Chem Chem Phys; 2013 Jul; 15(25):10376-84. PubMed ID: 23680815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deterministic Role of Concentration Surplus of Cation Vacancy over Anion Vacancy in Bipolar Memristive NiO.
    Sun Z; Zhao Y; He M; Gu L; Ma C; Jin K; Zhao D; Luo N; Zhang Q; Wang N; Duan W; Nan CW
    ACS Appl Mater Interfaces; 2016 May; 8(18):11583-91. PubMed ID: 27096884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectroscopic elucidation of ionic motion processes in tunnel oxide-based memristive devices.
    Baeumer C; Heisig T; Arndt B; Skaja K; Borgatti F; Offi F; Motti F; Panaccione G; Waser R; Menzel S; Dittmann R
    Faraday Discuss; 2019 Feb; 213(0):215-230. PubMed ID: 30364919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear ion drift-diffusion memristance description of TiO
    Alialy S; Esteki K; Ferreira MS; Boland JJ; Gomes da Rocha C
    Nanoscale Adv; 2020 Jun; 2(6):2514-2524. PubMed ID: 36133364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonlinear I-V relations and hysteresis in solid state devices based on oxide mixed-ionic-electronic conductors.
    Leshem A; Gonen E; Riess I
    Nanotechnology; 2011 Jun; 22(25):254024. PubMed ID: 21572193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manipulated transformation of filamentary and homogeneous resistive switching on ZnO thin film memristor with controllable multistate.
    Huang CH; Huang JS; Lai CC; Huang HW; Lin SJ; Chueh YL
    ACS Appl Mater Interfaces; 2013 Jul; 5(13):6017-23. PubMed ID: 23705848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A concerted migration mechanism of mixed oxide ion and electron conduction in reduced ceria studied by first-principles density functional theory.
    Nakayama M; Ohshima H; Nogami M; Martin M
    Phys Chem Chem Phys; 2012 May; 14(17):6079-84. PubMed ID: 22441331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards a quantitative description of solid electrolyte conductance switches.
    Morales-Masis M; Wiemhöfer HD; van Ruitenbeek JM
    Nanoscale; 2010 Oct; 2(10):2275-80. PubMed ID: 20721398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning Ionic Transport in Memristive Devices by Graphene with Engineered Nanopores.
    Lee J; Du C; Sun K; Kioupakis E; Lu WD
    ACS Nano; 2016 Mar; 10(3):3571-9. PubMed ID: 26954948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlled Growth of Fine Multifilaments in Polymer-Based Memristive Devices Via the Conduction Control.
    Yang H; Wang Z; Guo X; Su H; Sun K; Yang D; Xiao W; Wang Q; He D
    ACS Appl Mater Interfaces; 2020 Jul; 12(30):34370-34377. PubMed ID: 32627526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transmembrane potential across single conical nanopores and resulting memristive and memcapacitive ion transport.
    Wang D; Kvetny M; Liu J; Brown W; Li Y; Wang G
    J Am Chem Soc; 2012 Feb; 134(8):3651-4. PubMed ID: 22313339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electric currents in networks of interconnected memristors.
    Nedaaee Oskoee E; Sahimi M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 1):031105. PubMed ID: 21517452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Unified Capacitive-Coupled Memristive Model for the Nonpinched Current-Voltage Hysteresis Loop.
    Sun B; Chen Y; Xiao M; Zhou G; Ranjan S; Hou W; Zhu X; Zhao Y; Redfern SAT; Zhou YN
    Nano Lett; 2019 Sep; 19(9):6461-6465. PubMed ID: 31434487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.