These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
256 related articles for article (PubMed ID: 24633250)
1. The role of biophysical parameters in the antilipopolysaccharide activities of antimicrobial peptides from marine fish. Gopal R; Seo CH; Park Y Mar Drugs; 2014 Mar; 12(3):1471-94. PubMed ID: 24633250 [TBL] [Abstract][Full Text] [Related]
2. Inhibitory Effects of Antimicrobial Peptides on Lipopolysaccharide-Induced Inflammation. Sun Y; Shang D Mediators Inflamm; 2015; 2015():167572. PubMed ID: 26612970 [TBL] [Abstract][Full Text] [Related]
3. Effect of the hydrophobicity to net positive charge ratio on antibacterial and anti-endotoxin activities of structurally similar antimicrobial peptides. Rosenfeld Y; Lev N; Shai Y Biochemistry; 2010 Feb; 49(5):853-61. PubMed ID: 20058937 [TBL] [Abstract][Full Text] [Related]
4. Large-Scale Analysis of Antimicrobial Activities in Relation to Amphipathicity and Charge Reveals Novel Characterization of Antimicrobial Peptides. Wang CK; Shih LY; Chang KY Molecules; 2017 Nov; 22(11):. PubMed ID: 29165350 [TBL] [Abstract][Full Text] [Related]
5. NMR Structures and Interactions of Antimicrobial Peptides with Lipopolysaccharide: Connecting Structures to Functions. Bhattacharjya S Curr Top Med Chem; 2016; 16(1):4-15. PubMed ID: 26139110 [TBL] [Abstract][Full Text] [Related]
6. An intimate link between antimicrobial peptide sequence diversity and binding to essential components of bacterial membranes. Schmitt P; Rosa RD; Destoumieux-Garzón D Biochim Biophys Acta; 2016 May; 1858(5):958-70. PubMed ID: 26498397 [TBL] [Abstract][Full Text] [Related]
7. Design and membrane-disruption mechanism of charge-enriched AMPs exhibiting cell selectivity, high-salt resistance, and anti-biofilm properties. Han HM; Gopal R; Park Y Amino Acids; 2016 Feb; 48(2):505-22. PubMed ID: 26450121 [TBL] [Abstract][Full Text] [Related]
8. Defensive remodeling: How bacterial surface properties and biofilm formation promote resistance to antimicrobial peptides. Nuri R; Shprung T; Shai Y Biochim Biophys Acta; 2015 Nov; 1848(11 Pt B):3089-100. PubMed ID: 26051126 [TBL] [Abstract][Full Text] [Related]
9. Resurrecting inactive antimicrobial peptides from the lipopolysaccharide trap. Mohanram H; Bhattacharjya S Antimicrob Agents Chemother; 2014; 58(4):1987-96. PubMed ID: 24419338 [TBL] [Abstract][Full Text] [Related]
10. Influence of disulfide bonds in human beta defensin-3 on its strain specific activity against Gram-negative bacteria. Nehls C; Böhling A; Podschun R; Schubert S; Grötzinger J; Schromm A; Fedders H; Leippe M; Harder J; Kaconis Y; Gronow S; Gutsmann T Biochim Biophys Acta Biomembr; 2020 Aug; 1862(8):183273. PubMed ID: 32171739 [TBL] [Abstract][Full Text] [Related]
11. De novo designed lipopolysaccharide binding peptides: structure based development of antiendotoxic and antimicrobial drugs. Bhattacharjya S Curr Med Chem; 2010; 17(27):3080-93. PubMed ID: 20629624 [TBL] [Abstract][Full Text] [Related]
12. Parameters involved in antimicrobial and endotoxin detoxification activities of antimicrobial peptides. Rosenfeld Y; Sahl HG; Shai Y Biochemistry; 2008 Jun; 47(24):6468-78. PubMed ID: 18498177 [TBL] [Abstract][Full Text] [Related]
13. Design and synthesis of cationic antimicrobial peptides with improved activity and selectivity against Vibrio spp. Chou HT; Kuo TY; Chiang JC; Pei MJ; Yang WT; Yu HC; Lin SB; Chen WJ Int J Antimicrob Agents; 2008 Aug; 32(2):130-8. PubMed ID: 18586467 [TBL] [Abstract][Full Text] [Related]
14. Binding of an antimicrobial peptide to bacterial cells: Interaction with different species, strains and cellular components. Savini F; Loffredo MR; Troiano C; Bobone S; Malanovic N; Eichmann TO; Caprio L; Canale VC; Park Y; Mangoni ML; Stella L Biochim Biophys Acta Biomembr; 2020 Aug; 1862(8):183291. PubMed ID: 32234322 [TBL] [Abstract][Full Text] [Related]
15. Antimicrobial Peptides: Features, Action, and Their Resistance Mechanisms in Bacteria. Moravej H; Moravej Z; Yazdanparast M; Heiat M; Mirhosseini A; Moosazadeh Moghaddam M; Mirnejad R Microb Drug Resist; 2018; 24(6):747-767. PubMed ID: 29957118 [TBL] [Abstract][Full Text] [Related]
16. Temporins and their synergism against Gram-negative bacteria and in lipopolysaccharide detoxification. Mangoni ML; Shai Y Biochim Biophys Acta; 2009 Aug; 1788(8):1610-9. PubMed ID: 19422786 [TBL] [Abstract][Full Text] [Related]
17. Functional divergence in shrimp anti-lipopolysaccharide factors (ALFs): from recognition of cell wall components to antimicrobial activity. Rosa RD; Vergnes A; de Lorgeril J; Goncalves P; Perazzolo LM; Sauné L; Romestand B; Fievet J; Gueguen Y; Bachère E; Destoumieux-Garzón D PLoS One; 2013; 8(7):e67937. PubMed ID: 23861837 [TBL] [Abstract][Full Text] [Related]
18. Antimicrobial peptides as potential anti-biofilm agents against multidrug-resistant bacteria. Chung PY; Khanum R J Microbiol Immunol Infect; 2017 Aug; 50(4):405-410. PubMed ID: 28690026 [TBL] [Abstract][Full Text] [Related]
19. Cell selectivity, mechanism of action and LPS-neutralizing activity of bovine myeloid antimicrobial peptide-18 (BMAP-18) and its analogs. Lee EK; Kim YC; Nan YH; Shin SY Peptides; 2011 Jun; 32(6):1123-30. PubMed ID: 21497177 [TBL] [Abstract][Full Text] [Related]
20. An engineered arginine-rich α-helical antimicrobial peptide exhibits broad-spectrum bactericidal activity against pathogenic bacteria and reduces bacterial infections in mice. Yang CH; Chen YC; Peng SY; Tsai AP; Lee TJ; Yen JH; Liou JW Sci Rep; 2018 Oct; 8(1):14602. PubMed ID: 30279591 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]