These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

405 related articles for article (PubMed ID: 24633423)

  • 1. Metabolome-based genome-wide association study of maize kernel leads to novel biochemical insights.
    Wen W; Li D; Li X; Gao Y; Li W; Li H; Liu J; Liu H; Chen W; Luo J; Yan J
    Nat Commun; 2014 Mar; 5():3438. PubMed ID: 24633423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic Determinants of the Network of Primary Metabolism and Their Relationships to Plant Performance in a Maize Recombinant Inbred Line Population.
    Wen W; Li K; Alseekh S; Omranian N; Zhao L; Zhou Y; Xiao Y; Jin M; Yang N; Liu H; Florian A; Li W; Pan Q; Nikoloski Z; Yan J; Fernie AR
    Plant Cell; 2015 Jul; 27(7):1839-56. PubMed ID: 26187921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combining Quantitative Genetics Approaches with Regulatory Network Analysis to Dissect the Complex Metabolism of the Maize Kernel.
    Wen W; Liu H; Zhou Y; Jin M; Yang N; Li D; Luo J; Xiao Y; Pan Q; Tohge T; Fernie AR; Yan J
    Plant Physiol; 2016 Jan; 170(1):136-46. PubMed ID: 26556794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolome-Scale Genome-Wide Association Studies Reveal Chemical Diversity and Genetic Control of Maize Specialized Metabolites.
    Zhou S; Kremling KA; Bandillo N; Richter A; Zhang YK; Ahern KR; Artyukhin AB; Hui JX; Younkin GC; Schroeder FC; Buckler ES; Jander G
    Plant Cell; 2019 May; 31(5):937-955. PubMed ID: 30923231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic-based dissection of arsenic accumulation in maize using a genome-wide association analysis method.
    Zhao Z; Zhang H; Fu Z; Chen H; Lin Y; Yan P; Li W; Xie H; Guo Z; Zhang X; Tang J
    Plant Biotechnol J; 2018 May; 16(5):1085-1093. PubMed ID: 29055111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genomic basis underlying the metabolome-mediated drought adaptation of maize.
    Zhang F; Wu J; Sade N; Wu S; Egbaria A; Fernie AR; Yan J; Qin F; Chen W; Brotman Y; Dai M
    Genome Biol; 2021 Sep; 22(1):260. PubMed ID: 34488839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A forward genetics approach integrating genome-wide association study and expression quantitative trait locus mapping to dissect leaf development in maize (Zea mays).
    Miculan M; Nelissen H; Ben Hassen M; Marroni F; Inzé D; Pè ME; Dell'Acqua M
    Plant J; 2021 Aug; 107(4):1056-1071. PubMed ID: 34087008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The genetic architecture of amino acids dissection by association and linkage analysis in maize.
    Deng M; Li D; Luo J; Xiao Y; Liu H; Pan Q; Zhang X; Jin M; Zhao M; Yan J
    Plant Biotechnol J; 2017 Oct; 15(10):1250-1263. PubMed ID: 28218981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide association of carbon and nitrogen metabolism in the maize nested association mapping population.
    Zhang N; Gibon Y; Wallace JG; Lepak N; Li P; Dedow L; Chen C; So YS; Kremling K; Bradbury PJ; Brutnell T; Stitt M; Buckler ES
    Plant Physiol; 2015 Jun; 168(2):575-83. PubMed ID: 25918116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic basis of kernel starch content decoded in a maize multi-parent population.
    Hu S; Wang M; Zhang X; Chen W; Song X; Fu X; Fang H; Xu J; Xiao Y; Li Y; Bai G; Li J; Yang X
    Plant Biotechnol J; 2021 Nov; 19(11):2192-2205. PubMed ID: 34077617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of two new QTLs of maize (Zea mays L.) underlying kernel row number using the HNAU-NAM1 population.
    Fei X; Wang Y; Zheng Y; Shen X; E L; Ding J; Lai J; Song W; Zhao H
    BMC Genomics; 2022 Aug; 23(1):593. PubMed ID: 35971070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels.
    Li H; Peng Z; Yang X; Wang W; Fu J; Wang J; Han Y; Chai Y; Guo T; Yang N; Liu J; Warburton ML; Cheng Y; Hao X; Zhang P; Zhao J; Liu Y; Wang G; Li J; Yan J
    Nat Genet; 2013 Jan; 45(1):43-50. PubMed ID: 23242369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large-scale metabolite quantitative trait locus analysis provides new insights for high-quality maize improvement.
    Li K; Wen W; Alseekh S; Yang X; Guo H; Li W; Wang L; Pan Q; Zhan W; Liu J; Li Y; Wu X; Brotman Y; Willmitzer L; Li J; Fernie AR; Yan J
    Plant J; 2019 Jul; 99(2):216-230. PubMed ID: 30888713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kernel size-related genes revealed by an integrated eQTL analysis during early maize kernel development.
    Pang J; Fu J; Zong N; Wang J; Song D; Zhang X; He C; Fang T; Zhang H; Fan Y; Wang G; Zhao J
    Plant J; 2019 Apr; 98(1):19-32. PubMed ID: 30548709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beyond pathways: genetic dissection of tocopherol content in maize kernels by combining linkage and association analyses.
    Wang H; Xu S; Fan Y; Liu N; Zhan W; Liu H; Xiao Y; Li K; Pan Q; Li W; Deng M; Liu J; Jin M; Yang X; Li J; Li Q; Yan J
    Plant Biotechnol J; 2018 Aug; 16(8):1464-1475. PubMed ID: 29356296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined GWAS and QTL analysis for dissecting the genetic architecture of kernel test weight in maize.
    Zhang X; Guan Z; Wang L; Fu J; Zhang Y; Li Z; Ma L; Liu P; Zhang Y; Liu M; Li P; Zou C; He Y; Lin H; Yuan G; Gao S; Pan G; Shen Y
    Mol Genet Genomics; 2020 Mar; 295(2):409-420. PubMed ID: 31807910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Systemic Investigation of Genetic Architecture and Gene Resources Controlling Kernel Size-Related Traits in Maize.
    Wang C; Li H; Long Y; Dong Z; Wang J; Liu C; Wei X; Wan X
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36674545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Linkage and association mapping in multi-parental populations reveal the genetic basis of carotenoid variation in maize kernels.
    Yin P; Fu X; Feng H; Yang Y; Xu J; Zhang X; Wang M; Ji S; Zhao B; Fang H; Du X; Li Y; Hu S; Li K; Xu S; Li Z; Liu F; Xiao Y; Wang Y; Li J; Yang X
    Plant Biotechnol J; 2024 Aug; 22(8):2312-2326. PubMed ID: 38548388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic dissection of the maize kernel development process via conditional QTL mapping for three developing kernel-related traits in an immortalized F2 population.
    Zhang Z; Wu X; Shi C; Wang R; Li S; Wang Z; Liu Z; Xue Y; Tang G; Tang J
    Mol Genet Genomics; 2016 Feb; 291(1):437-54. PubMed ID: 26420507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. QTLs and candidate genes for desiccation and abscisic acid content in maize kernels.
    Capelle V; Remoué C; Moreau L; Reyss A; Mahé A; Massonneau A; Falque M; Charcosset A; Thévenot C; Rogowsky P; Coursol S; Prioul JL
    BMC Plant Biol; 2010 Jan; 10():2. PubMed ID: 20047666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.