BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 24633518)

  • 1. Simulating the co-encapsulation of drugs in a "smart" core-shell-shell polymer nanoparticle.
    Buxton GA
    Eur Phys J E Soft Matter; 2014 Mar; 37(3):14. PubMed ID: 24633518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic drug-targeting carrier encapsulated with thermosensitive smart polymer: core-shell nanoparticle carrier and drug release response.
    Zhang J; Misra RD
    Acta Biomater; 2007 Nov; 3(6):838-50. PubMed ID: 17638599
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-assembled lipid--polymer hybrid nanoparticles: a robust drug delivery platform.
    Zhang L; Chan JM; Gu FX; Rhee JW; Wang AZ; Radovic-Moreno AF; Alexis F; Langer R; Farokhzad OC
    ACS Nano; 2008 Aug; 2(8):1696-702. PubMed ID: 19206374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-assembly of thermally responsive nanoparticles of a genetically encoded peptide polymer by drug conjugation.
    McDaniel JR; Bhattacharyya J; Vargo KB; Hassouneh W; Hammer DA; Chilkoti A
    Angew Chem Int Ed Engl; 2013 Feb; 52(6):1683-7. PubMed ID: 23280697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conjugated Polymer Nanoparticles with Appended Photo-Responsive Units for Controlled Drug Delivery, Release, and Imaging.
    Senthilkumar T; Zhou L; Gu Q; Liu L; Lv F; Wang S
    Angew Chem Int Ed Engl; 2018 Oct; 57(40):13114-13119. PubMed ID: 30110129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Importance of Evaluating Dynamic Encapsulation Stability of Amphiphilic Assemblies in Serum.
    Liu B; Thayumanavan S
    Biomacromolecules; 2017 Dec; 18(12):4163-4170. PubMed ID: 29086559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of Dialysis- and Solvatofluorochromism-Based Methods to Determine Drug Release Rates from Polymer Nanoassemblies.
    Reichel D; Bae Y
    Pharm Res; 2017 Feb; 34(2):394-407. PubMed ID: 27873146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimizing partition-controlled drug release from electrospun core-shell fibers.
    Tiwari SK; Tzezana R; Zussman E; Venkatraman SS
    Int J Pharm; 2010 Jun; 392(1-2):209-17. PubMed ID: 20227472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradable Nanoparticles-Loaded PLGA Microcapsule for the Enhanced Encapsulation Efficiency and Controlled Release of Hydrophilic Drug.
    Ryu S; Park S; Lee HY; Lee H; Cho CW; Baek JS
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33801871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoparticle-directed and ionically forced polyphosphate coacervation: a versatile and reversible core-shell system for drug delivery.
    Müller WEG; Tolba E; Wang S; Neufurth M; Lieberwirth I; Ackermann M; Schröder HC; Wang X
    Sci Rep; 2020 Oct; 10(1):17147. PubMed ID: 33051468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Core-Shell Biopolymer Nanoparticles for Co-Delivery of Curcumin and Piperine: Sequential Electrostatic Deposition of Hyaluronic Acid and Chitosan Shells on the Zein Core.
    Chen S; McClements DJ; Jian L; Han Y; Dai L; Mao L; Gao Y
    ACS Appl Mater Interfaces; 2019 Oct; 11(41):38103-38115. PubMed ID: 31509373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cationic fluorescent polymer core-shell nanoparticles for encapsulation, delivery, and non-invasively tracking the intracellular release of siRNA.
    Yu JC; Zhu S; Feng PJ; Qian CG; Huang J; Sun MJ; Shen QD
    Chem Commun (Camb); 2015 Feb; 51(14):2976-9. PubMed ID: 25597349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual pH-responsive charge-reversal and photo-crosslinkable polymer nanoparticles for controlled drug release.
    Wang M; He K; Li J; Shen T; Li Y; Xu Y; Yuan C; Dai L
    J Biomater Sci Polym Ed; 2020 May; 31(7):849-868. PubMed ID: 32009554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual drug release from core-shell nanoparticles with distinct release profiles.
    Cao Y; Wang B; Wang Y; Lou D
    J Pharm Sci; 2014 Oct; 103(10):3205-16. PubMed ID: 25116645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergy between polymer crystallinity and nanoparticles size for payloads release.
    Niyom Y; Phakkeeree T; Flood A; Crespy D
    J Colloid Interface Sci; 2019 Aug; 550():139-146. PubMed ID: 31063872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzyme and Thermal Dual Responsive Amphiphilic Polymer Core-Shell Nanoparticle for Doxorubicin Delivery to Cancer Cells.
    Kashyap S; Singh N; Surnar B; Jayakannan M
    Biomacromolecules; 2016 Jan; 17(1):384-98. PubMed ID: 26652038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymer-surfactant nanoparticles for sustained release of water-soluble drugs.
    Chavanpatil MD; Khdair A; Patil Y; Handa H; Mao G; Panyam J
    J Pharm Sci; 2007 Dec; 96(12):3379-89. PubMed ID: 17721942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Host-guest interaction mediated polymeric assemblies: multifunctional nanoparticles for drug and gene delivery.
    Zhang J; Sun H; Ma PX
    ACS Nano; 2010 Feb; 4(2):1049-59. PubMed ID: 20112968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Core-shell polymer nanoparticles for prevention of GSH drug detoxification and cisplatin delivery to breast cancer cells.
    Surnar B; Sharma K; Jayakannan M
    Nanoscale; 2015 Nov; 7(42):17964-79. PubMed ID: 26465291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Nanoparticle Formation and Delivery of Poorly Water-soluble Drugs by Hydrophobized Polymers].
    Kaneo Y
    Yakugaku Zasshi; 2020; 140(4):555-567. PubMed ID: 32238638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.