BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 24633731)

  • 1. Heart rate variability and heart rate asymmetry analysis: does the inspiration/expiration ratio matter?
    Hejjel L
    J Appl Physiol (1985); 2014 Mar; 116(6):709. PubMed ID: 24633731
    [No Abstract]   [Full Text] [Related]  

  • 2. Effects of respiratory time ratio on heart rate variability and spontaneous baroreflex sensitivity.
    Wang YP; Kuo TB; Lai CT; Chu JW; Yang CC
    J Appl Physiol (1985); 2013 Dec; 115(11):1648-55. PubMed ID: 24092689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reply to Hejjel.
    Wang YP; Kuo TB; Yang CC
    J Appl Physiol (1985); 2014 Mar; 116(6):710. PubMed ID: 24633732
    [No Abstract]   [Full Text] [Related]  

  • 4. [The influence of individually fitted controlled breathing frequency on the heart rate variability indexes].
    Chuian OM; Biriukova OO; Ravaieva MIu
    Fiziol Zh (1994); 2010; 56(5):86-94. PubMed ID: 21265083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Joint symbolic dynamics as an effective approach to study the influence of respiratory phase on baroreflex function.
    Kabir MM; Voss A; Abbott D; Baumert M
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():49-52. PubMed ID: 24109621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Joint symbolic analyses of heart rate, blood pressure, and respiratory dynamics.
    Baumert M; Javorka M; Kabir MM
    J Electrocardiol; 2013; 46(6):569-73. PubMed ID: 23958037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Autonomic tone in links of the respiratory-hemodynamic system of junior schoolchildren].
    Kuznetsova OV; Son'kin VD
    Fiziol Cheloveka; 2009; 35(6):94-102. PubMed ID: 20063712
    [No Abstract]   [Full Text] [Related]  

  • 8. Effects of breathing frequency on baroreflex effectiveness index and spontaneous baroreflex sensitivity derived by sequence analysis.
    Wang YP; Kuo TB; Lai CT; Lee GS; Yang CC
    J Hypertens; 2012 Nov; 30(11):2151-8. PubMed ID: 22990351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Counterpoint: respiratory sinus arrhythmia is due to the baroreflex mechanism.
    Karemaker JM
    J Appl Physiol (1985); 2009 May; 106(5):1742-3; discussion 1744. PubMed ID: 19414625
    [No Abstract]   [Full Text] [Related]  

  • 10. Point:counterpoint: respiratory sinus arrhythmia is due to a central mechanism vs. respiratory sinus arrhythmia is due to the baroreflex mechanism.
    Eckberg DL
    J Appl Physiol (1985); 2009 May; 106(5):1740-2; discussion 1744. PubMed ID: 18719228
    [No Abstract]   [Full Text] [Related]  

  • 11. Heart rate variability and spontaneous baroreflex sequences in supine healthy volunteers subjected to nasal positive airway pressure.
    Valipour A; Schneider F; Kössler W; Saliba S; Burghuber OC
    J Appl Physiol (1985); 2005 Dec; 99(6):2137-43. PubMed ID: 16002778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inspiration during the sleep stages without and after preceding exercise, as a factor supporting circulation of blood and the "resting procedure".
    Grammaticos P; Daskalopoulou E; Grammatikou-Zilidou E; Kallistratos E; Daskalopoulos E
    Hell J Nucl Med; 2005; 8(2):113-8. PubMed ID: 16142253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of patterned breathing and continuous positive airway pressure on cardiovascular regulation in healthy volunteers.
    Török T; Rudas L; Kardos A; Paprika D
    Acta Physiol Hung; 1997-1998; 85(1):1-10. PubMed ID: 9530431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Phase and frequency locking of 0.1 Hz oscillations in heart rhythm and baroreflex control of arterial pressure by respiration with linearly varying frequency in healthy subjects].
    Karavaev AS; Kiselev AR; Gridnev VI; Borovkova EI; Prokhorov MD; Posnenkova OM; Ponomarenkova OM; Ponomarenko VI; Bezruchko BP; Shvarts VA
    Fiziol Cheloveka; 2013; 39(4):93-104. PubMed ID: 25486835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of pulmonary arterial input impedance during transition from inspiration to expiration.
    Castiglioni P; Tommasini R; Morpurgo M; Di Rienzo M
    J Appl Physiol (1985); 1997 Dec; 83(6):2123-30. PubMed ID: 9390990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the nature of heart rate variability in a breathing normal subject: a stochastic process analysis.
    Buchner T; Petelczyc M; Zebrowski JJ; Prejbisz A; Kabat M; Januszewicz A; Piotrowska AJ; Szelenberger W
    Chaos; 2009 Jun; 19(2):028504. PubMed ID: 19566279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of inspiratory impedance on the carotid-cardiac baroreflex response in humans.
    Convertino VA; Ratliff DA; Ryan KL; Cooke WH; Doerr DF; Ludwig DA; Muniz GW; Britton DL; Clah SD; Fernald KB; Ruiz AF; Idris A; Lurie KG
    Clin Auton Res; 2004 Aug; 14(4):240-8. PubMed ID: 15316841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Model-based setting of inspiratory pressure and respiratory rate in pressure-controlled ventilation.
    Schranz C; Becher T; Schädler D; Weiler N; Möller K
    Physiol Meas; 2014 Mar; 35(3):383-97. PubMed ID: 24499739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of spontaneous baroreflex sensitivity using transfer function analysis: effects of positive pressure ventilation.
    Glos M; Romberg D; Endres S; Fietze I
    Biomed Tech (Berl); 2007 Feb; 52(1):66-72. PubMed ID: 17313337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peripheral chemoreflex and baroreflex interactions in cardiovascular regulation in humans.
    Halliwill JR; Morgan BJ; Charkoudian N
    J Physiol; 2003 Oct; 552(Pt 1):295-302. PubMed ID: 12897165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.