These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 24634113)

  • 41. 14-3-3 proteins regulate the intracellular localization of the transcriptional activator GmMYB176 and affect isoflavonoid synthesis in soybean.
    Li X; Chen L; Dhaubhadel S
    Plant J; 2012 Jul; 71(2):239-50. PubMed ID: 22404168
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Genome-wide identification of soybean microRNAs and their targets reveals their organ-specificity and responses to phosphate starvation.
    Xu F; Liu Q; Chen L; Kuang J; Walk T; Wang J; Liao H
    BMC Genomics; 2013 Jan; 14():66. PubMed ID: 23368765
    [TBL] [Abstract][Full Text] [Related]  

  • 43. miR444a has multiple functions in the rice nitrate-signaling pathway.
    Yan Y; Wang H; Hamera S; Chen X; Fang R
    Plant J; 2014 Apr; 78(1):44-55. PubMed ID: 24460537
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Two soybean bHLH factors regulate response to iron deficiency.
    Li L; Gao W; Peng Q; Zhou B; Kong Q; Ying Y; Shou H
    J Integr Plant Biol; 2018 Jul; 60(7):608-622. PubMed ID: 29575545
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Overexpression of a novel chrysanthemum NAC transcription factor gene enhances salt tolerance in tobacco.
    Liu QL; Xu KD; Zhao LJ; Pan YZ; Jiang BB; Zhang HQ; Liu GL
    Biotechnol Lett; 2011 Oct; 33(10):2073-82. PubMed ID: 21660574
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Involvement of OsSPX1 in phosphate homeostasis in rice.
    Wang C; Ying S; Huang H; Li K; Wu P; Shou H
    Plant J; 2009 Mar; 57(5):895-904. PubMed ID: 19000161
    [TBL] [Abstract][Full Text] [Related]  

  • 47. GmWRKY46, a WRKY transcription factor, negatively regulates phosphorus tolerance primarily through modifying root morphology in soybean.
    Liu X; Yang Y; Wang R; Cui R; Xu H; Sun C; Wang J; Zhang H; Chen H; Zhang D
    Plant Sci; 2022 Feb; 315():111148. PubMed ID: 35067311
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cloning and analysis of the soybean MEKK gene.
    Sha AH; Ba HP; Shan ZH; Chen HF; Chen SL; Qiu DZ; Zhou XA; Chen YH
    Genet Mol Res; 2015 Apr; 14(2):3625-32. PubMed ID: 25966131
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Genome Wide Transcriptome Analysis Reveals Complex Regulatory Mechanisms Underlying Phosphate Homeostasis in Soybean Nodules.
    Xue Y; Zhuang Q; Zhu S; Xiao B; Liang C; Liao H; Tian J
    Int J Mol Sci; 2018 Sep; 19(10):. PubMed ID: 30261621
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A genome-wide expression profile analysis reveals active genes and pathways coping with phosphate starvation in soybean.
    Wang Q; Wang J; Yang Y; Du W; Zhang D; Yu D; Cheng H
    BMC Genomics; 2016 Mar; 17():192. PubMed ID: 26944721
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Wild soybean roots depend on specific transcription factors and oxidation reduction related genesin response to alkaline stress.
    DuanMu H; Wang Y; Bai X; Cheng S; Deyholos MK; Wong GK; Li D; Zhu D; Li R; Yu Y; Cao L; Chen C; Zhu Y
    Funct Integr Genomics; 2015 Nov; 15(6):651-60. PubMed ID: 25874911
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Quantitative Proteomics Reveals that GmENO2 Proteins Are Involved in Response to Phosphate Starvation in the Leaves of
    Cheng L; Min W; Li M; Zhou L; Hsu CC; Yang X; Jiang X; Ruan Z; Zhong Y; Wang ZY; Wang W
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33477636
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cloning and functional prediction of differentially expressed genes in the leaves of Glycine max parents and hybrids at the seedling stage.
    Zhang J; Yao D; Wang P; Guan SY; Ma J; Fu YP
    Genet Mol Res; 2014 Feb; 13(3):5474-83. PubMed ID: 24615101
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Rice SPX6 negatively regulates the phosphate starvation response through suppression of the transcription factor PHR2.
    Zhong Y; Wang Y; Guo J; Zhu X; Shi J; He Q; Liu Y; Wu Y; Zhang L; Lv Q; Mao C
    New Phytol; 2018 Jul; 219(1):135-148. PubMed ID: 29658119
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Soybean DRE-binding transcription factors that are responsive to abiotic stresses.
    Li XP; Tian AG; Luo GZ; Gong ZZ; Zhang JS; Chen SY
    Theor Appl Genet; 2005 May; 110(8):1355-62. PubMed ID: 15841365
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Expression of root-related transcription factors associated with flooding tolerance of soybean (Glycine max).
    Valliyodan B; Van Toai TT; Alves JD; de Fátima P Goulart P; Lee JD; Fritschi FB; Rahman MA; Islam R; Shannon JG; Nguyen HT
    Int J Mol Sci; 2014 Sep; 15(10):17622-43. PubMed ID: 25268626
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Cloning and functional analysis of SCTF-1 encoding a C2H2-type Zinc finger protein from soybean].
    Song B; Wang PW; Fu YP; Fan XH; Xia HF; Gao W; Hong Y; Wang H; Zhang Z; Ma J
    Yi Chuan; 2012 Jun; 34(6):749-56. PubMed ID: 22698747
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Early Transcriptomic Response to Phosphate Deprivation in Soybean Leaves as Revealed by RNA-Sequencing.
    Zeng H; Zhang X; Zhang X; Pi E; Xiao L; Zhu Y
    Int J Mol Sci; 2018 Jul; 19(7):. PubMed ID: 30041471
    [TBL] [Abstract][Full Text] [Related]  

  • 59. StMYB44 negatively regulates phosphate transport by suppressing expression of PHOSPHATE1 in potato.
    Zhou X; Zha M; Huang J; Li L; Imran M; Zhang C
    J Exp Bot; 2017 Feb; 68(5):1265-1281. PubMed ID: 28338870
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The FvPHR1 transcription factor control phosphate homeostasis by transcriptionally regulating miR399a in woodland strawberry.
    Wang Y; Zhang F; Cui W; Chen K; Zhao R; Zhang Z
    Plant Sci; 2019 Mar; 280():258-268. PubMed ID: 30824004
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.