These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
578 related articles for article (PubMed ID: 24634180)
1. Overexpression of Arabidopsis HsfA1a enhances diverse stress tolerance by promoting stress-induced Hsp expression. Qian J; Chen J; Liu YF; Yang LL; Li WP; Zhang LM Genet Mol Res; 2014 Feb; 13(1):1233-43. PubMed ID: 24634180 [TBL] [Abstract][Full Text] [Related]
2. Arabidopsis heat shock factor HsfA1a directly senses heat stress, pH changes, and hydrogen peroxide via the engagement of redox state. Liu Y; Zhang C; Chen J; Guo L; Li X; Li W; Yu Z; Deng J; Zhang P; Zhang K; Zhang L Plant Physiol Biochem; 2013 Mar; 64():92-8. PubMed ID: 23399534 [TBL] [Abstract][Full Text] [Related]
3. The calmodulin-binding protein kinase 3 is part of heat-shock signal transduction in Arabidopsis thaliana. Liu HT; Gao F; Li GL; Han JL; Liu DL; Sun DY; Zhou RG Plant J; 2008 Sep; 55(5):760-73. PubMed ID: 18466301 [TBL] [Abstract][Full Text] [Related]
4. HsfA1d and HsfA1e involved in the transcriptional regulation of HsfA2 function as key regulators for the Hsf signaling network in response to environmental stress. Nishizawa-Yokoi A; Nosaka R; Hayashi H; Tainaka H; Maruta T; Tamoi M; Ikeda M; Ohme-Takagi M; Yoshimura K; Yabuta Y; Shigeoka S Plant Cell Physiol; 2011 May; 52(5):933-45. PubMed ID: 21471117 [TBL] [Abstract][Full Text] [Related]
5. Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression. Yoshida T; Ohama N; Nakajima J; Kidokoro S; Mizoi J; Nakashima K; Maruyama K; Kim JM; Seki M; Todaka D; Osakabe Y; Sakuma Y; Schöffl F; Shinozaki K; Yamaguchi-Shinozaki K Mol Genet Genomics; 2011 Dec; 286(5-6):321-32. PubMed ID: 21931939 [TBL] [Abstract][Full Text] [Related]
6. Isolation of heat shock factor HsfA1a-binding sites in vivo revealed variations of heat shock elements in Arabidopsis thaliana. Guo L; Chen S; Liu K; Liu Y; Ni L; Zhang K; Zhang L Plant Cell Physiol; 2008 Sep; 49(9):1306-15. PubMed ID: 18641404 [TBL] [Abstract][Full Text] [Related]
7. Common and distinct functions of Arabidopsis class A1 and A2 heat shock factors in diverse abiotic stress responses and development. Liu HC; Charng YY Plant Physiol; 2013 Sep; 163(1):276-90. PubMed ID: 23832625 [TBL] [Abstract][Full Text] [Related]
8. An Hsp70 antisense gene affects the expression of HSP70/HSC70, the regulation of HSF, and the acquisition of thermotolerance in transgenic Arabidopsis thaliana. Lee JH; Schöffl F Mol Gen Genet; 1996 Aug; 252(1-2):11-9. PubMed ID: 8804399 [TBL] [Abstract][Full Text] [Related]
9. Detection of in vivo interactions between Arabidopsis class A-HSFs, using a novel BiFC fragment, and identification of novel class B-HSF interacting proteins. Li M; Doll J; Weckermann K; Oecking C; Berendzen KW; Schöffl F Eur J Cell Biol; 2010; 89(2-3):126-32. PubMed ID: 19945192 [TBL] [Abstract][Full Text] [Related]
10. Promoter specificity and interactions between early and late Arabidopsis heat shock factors. Li M; Berendzen KW; Schöffl F Plant Mol Biol; 2010 Jul; 73(4-5):559-67. PubMed ID: 20458611 [TBL] [Abstract][Full Text] [Related]
11. HsfA7 coordinates the transition from mild to strong heat stress response by controlling the activity of the master regulator HsfA1a in tomato. Mesihovic A; Ullrich S; Rosenkranz RRE; Gebhardt P; Bublak D; Eich H; Weber D; Berberich T; Scharf KD; Schleiff E; Fragkostefanakis S Cell Rep; 2022 Jan; 38(2):110224. PubMed ID: 35021091 [TBL] [Abstract][Full Text] [Related]
12. Identification of novel heat shock factor-dependent genes and biochemical pathways in Arabidopsis thaliana. Busch W; Wunderlich M; Schöffl F Plant J; 2005 Jan; 41(1):1-14. PubMed ID: 15610345 [TBL] [Abstract][Full Text] [Related]
13. Arabidopsis HsfB1 and HsfB2b act as repressors of the expression of heat-inducible Hsfs but positively regulate the acquired thermotolerance. Ikeda M; Mitsuda N; Ohme-Takagi M Plant Physiol; 2011 Nov; 157(3):1243-54. PubMed ID: 21908690 [TBL] [Abstract][Full Text] [Related]
14. High-level overexpression of the Arabidopsis HsfA2 gene confers not only increased themotolerance but also salt/osmotic stress tolerance and enhanced callus growth. Ogawa D; Yamaguchi K; Nishiuchi T J Exp Bot; 2007; 58(12):3373-83. PubMed ID: 17890230 [TBL] [Abstract][Full Text] [Related]
15. Functional diversification of tomato HsfA1 factors is based on DNA binding domain properties. El-Shershaby A; Ullrich S; Simm S; Scharf KD; Schleiff E; Fragkostefanakis S Gene; 2019 Sep; 714():143985. PubMed ID: 31330236 [TBL] [Abstract][Full Text] [Related]
16. Derepression of the activity of genetically engineered heat shock factor causes constitutive synthesis of heat shock proteins and increased thermotolerance in transgenic Arabidopsis. Lee JH; Hübel A; Schöffl F Plant J; 1995 Oct; 8(4):603-12. PubMed ID: 7496404 [TBL] [Abstract][Full Text] [Related]
17. A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis. Charng YY; Liu HC; Liu NY; Chi WT; Wang CN; Chang SH; Wang TT Plant Physiol; 2007 Jan; 143(1):251-62. PubMed ID: 17085506 [TBL] [Abstract][Full Text] [Related]
18. Generation of dominant-negative effects on the heat shock response in Arabidopsis thaliana by transgenic expression of a chimaeric HSF1 protein fusion construct. Wunderlich M; Werr W; Schöffl F Plant J; 2003 Aug; 35(4):442-51. PubMed ID: 12904207 [TBL] [Abstract][Full Text] [Related]