BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 24634779)

  • 1. Common Virulence Factors and Tissue Targets of Entomopathogenic Bacteria for Biological Control of Lepidopteran Pests.
    Castagnola A; Stock SP
    Insects; 2014 Jan; 5(1):139-66. PubMed ID: 24634779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insect pathogens as biological control agents: Back to the future.
    Lacey LA; Grzywacz D; Shapiro-Ilan DI; Frutos R; Brownbridge M; Goettel MS
    J Invertebr Pathol; 2015 Nov; 132():1-41. PubMed ID: 26225455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insecticidal toxins from Photorhabdus bacteria and their potential use in agriculture.
    ffrench-Constant RH; Dowling A; Waterfield NR
    Toxicon; 2007 Mar; 49(4):436-51. PubMed ID: 17207509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of virulence in Photorhabdus spp., entomopathogenic nematode symbionts.
    Blackburn D; Wood PL; Burk TJ; Crawford B; Wright SM; Adams BJ
    Syst Appl Microbiol; 2016 May; 39(3):173-179. PubMed ID: 27020955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacterial insecticidal toxins.
    Chattopadhyay A; Bhatnagar NB; Bhatnagar R
    Crit Rev Microbiol; 2004; 30(1):33-54. PubMed ID: 15116762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A genomic sample sequence of the entomopathogenic bacterium Photorhabdus luminescens W14: potential implications for virulence.
    Ffrench-Constant RH; Waterfield N; Burland V; Perna NT; Daborn PJ; Bowen D; Blattner FR
    Appl Environ Microbiol; 2000 Aug; 66(8):3310-29. PubMed ID: 10919786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative genomics of the emerging human pathogen Photorhabdus asymbiotica with the insect pathogen Photorhabdus luminescens.
    Wilkinson P; Waterfield NR; Crossman L; Corton C; Sanchez-Contreras M; Vlisidou I; Barron A; Bignell A; Clark L; Ormond D; Mayho M; Bason N; Smith F; Simmonds M; Churcher C; Harris D; Thompson NR; Quail M; Parkhill J; Ffrench-Constant RH
    BMC Genomics; 2009 Jul; 10():302. PubMed ID: 19583835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Secretion Systems and Secreted Proteins in Gram-Negative Entomopathogenic Bacteria: Their Roles in Insect Virulence and Beyond.
    McQuade R; Stock SP
    Insects; 2018 Jun; 9(2):. PubMed ID: 29921761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative in vivo gene expression of the closely related bacteria Photorhabdus temperata and Xenorhabdus koppenhoeferi upon infection of the same insect host, Rhizotrogus majalis.
    An R; Sreevatsan S; Grewal PS
    BMC Genomics; 2009 Sep; 10():433. PubMed ID: 19754939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flagellar Regulation and Virulence in the Entomopathogenic Bacteria-Xenorhabdus nematophila and Photorhabdus luminescens.
    Givaudan A; Lanois A
    Curr Top Microbiol Immunol; 2017; 402():39-51. PubMed ID: 28091933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative Genomics of
    Zheng J; Gao Q; Liu L; Liu H; Wang Y; Peng D; Ruan L; Raymond B; Sun M
    mBio; 2017 Aug; 8(4):. PubMed ID: 28790205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterologous expression of Bacillus thuringiensis vegetative insecticidal protein-encoding gene vip3LB in Photorhabdus temperata strain K122 and oral toxicity against the lepidoptera Ephestia kuehniella and Spodoptera littoralis.
    Jamoussi K; Sellami S; Abdelkefi-Mesrati L; Givaudan A; Jaoua S
    Mol Biotechnol; 2009 Oct; 43(2):97-103. PubMed ID: 19462262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From insects to human hosts: Identification of major genomic differences between entomopathogenic strains of Photorhabdus and the emerging human pathogen Photorhabdus asymbiotica.
    Tounsi S; Blight M; Jaoua S; de Lima Pimenta A
    Int J Med Microbiol; 2006 Dec; 296(8):521-30. PubMed ID: 17029962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacillus thuringiensis insecticidal three-domain Cry toxins: mode of action, insect resistance and consequences for crop protection.
    Pardo-López L; Soberón M; Bravo A
    FEMS Microbiol Rev; 2013 Jan; 37(1):3-22. PubMed ID: 22540421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The tc genes of Photorhabdus: a growing family.
    Waterfield NR; Bowen DJ; Fetherston JD; Perry RD; ffrench-Constant RH
    Trends Microbiol; 2001 Apr; 9(4):185-91. PubMed ID: 11286884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photorhabdus adhesion modification protein (Pam) binds extracellular polysaccharide and alters bacterial attachment.
    Jones RT; Sanchez-Contreras M; Vlisidou I; Amos MR; Yang G; Muñoz-Berbel X; Upadhyay A; Potter UJ; Joyce SA; Ciche TA; Jenkins AT; Bagby S; Ffrench-Constant RH; Waterfield NR
    BMC Microbiol; 2010 May; 10():141. PubMed ID: 20462430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel anti-dipteran
    Fayad N; Kambris Z; El Chamy L; Mahillon J; Kallassy Awad M
    Appl Environ Microbiol; 2021 Mar; 87(5):. PubMed ID: 33310715
    [No Abstract]   [Full Text] [Related]  

  • 18. Probing the tri-trophic interaction between insects, nematodes and Photorhabdus.
    Eleftherianos I; Joyce S; Ffrench-Constant RH; Clarke DJ; Reynolds SE
    Parasitology; 2010 Sep; 137(11):1695-706. PubMed ID: 20500922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Taxonomic and molecular characterization of a new entomopathogenic nematode species, Heterorhabditis casmirica n. sp., and whole genome sequencing of its associated bacterial symbiont.
    Bhat AH; Machado RAR; Abolafia J; Ruiz-Cuenca AN; Askary TH; Ameen F; Dass WM
    Parasit Vectors; 2023 Oct; 16(1):383. PubMed ID: 37880744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toxins and secretion systems of Photorhabdus luminescens.
    Rodou A; Ankrah DO; Stathopoulos C
    Toxins (Basel); 2010 Jun; 2(6):1250-64. PubMed ID: 22069636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.